
CSE 598: Project Description

Joshua J. Daymude

Due Friday, November 22, 11:59pm

Overview

This course project gives you an opportunity to work with Markov chain and Monte Carlo methods
in a way that’s relevant to you. You can work in groups of 1–3, but note that larger groups
(especially groups of three) will be expected to produce significantly more work. There will be
three components to this project:

• A 1-page project proposal including (i) your project title, (ii) a list of your group members,
(iii) the type of project chosen, (iv) details on the problem being considered, and (v) a general
outline of the MCMC approaches to be used/investigated. Due Friday, October 18, 11:59pm.

• A 6-page written report detailing your work (more details on the content can be found below).
Due Friday, November 22, 11:59pm.

• A presentation showing your work in the style of a conference talk, roughly 15–25 minutes
each (depending on the total number of groups). Presentation time slots will be assigned
randomly for the last two weeks of classes. Due Friday, November 22, 11:59pm.

All three deliverables must be submitted on Canvas by their respective deadlines. As stated in the
syllabus, the written report is worth 25% of the overall course grade and the presentation is worth
30%. The project proposal will be counted as a fifth of the written report. Students can choose
between three project types:

1. Implementation: Students will find a suitable research paper (or papers) utilizing Markov
chains and/or Monte Carlo methods and will perform a rigorous validation of the results
therein using an original implementation. Preferably, the students will extend the results
of the paper to new application domains or datasets, designing and executing their own
experiments. Code can be written in a language of the student’s choosing, but must be well
documented (both with in-code comments and external documentation, if necessary).

2. Survey Paper: Students will choose a technique or application area related to Markov
chains and Monte Carlo methods and will write a rigorous survey paper on it. The survey
must be unified by a specific line of questioning or investigation; it should not simply list a
long summary of various papers. The final paper must cite at least 20 relevant references.

3. Original Research: Students will pose an original research question relating to or using
Markov chains and/or Monte Carlo methods and will write a paper investigating the research
question. The format of a standard academic paper for the topic area is expected, including
an introduction, related work, etc.
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Report Guidelines

The written report should be 6 pages long, including references, prepared in the two-column ACM
conference style (sigconf).1 As such, descriptions should be clear, succinct, and detailed. Reports
should be written using the standard format for research papers, including an abstract (summarizing
the work), an introduction (with motivating context, related work, and a clear problem statement),
relevant sections for the chosen project type, a discussion/conclusion, and references. Some of these
specifications vary according to the type of project.

An implementation project should motivate the problem(s) considered and the MCMC ap-
proaches taken in the papers of choice. Relevant details on the chosen papers’ techniques should
be given in a background section. Areas where you went beyond the confines of the original paper
should be discussed in detail. All datasets, experimental setup, and results should be justified and
described at length. The inner workings of your implementation should stand for themselves (i.e.,
document your code! ), but you may highlight important implementation details in your report if
they merit discussion. All code should be submitted alongside the written report.

A survey paper project should be a detailed discussion of a technique or application area re-
lated to MCMC. The survey should be unified around a specific line of inquiry, and its structure
should reflect that investigation. The final report should cite and discuss at least 20 relevant
references (note that a survey does not need a dedicated related work section). Do not simply
parrot (copy/paste) the papers that you are reading! A survey paper should thoughtfully combine,
compare, and contrast different papers and results in order to answer a new question.

Finally, an original research paper should take the form appropriate for your area of research.
Carefully motivate your problem and why MCMC is a relevant approach. Discuss relevant literature
— including, if applicable, why other approaches are insufficient or suboptimal — and give context
for why this problem is interesting. Explain your MCMC technique or approach, providing either
proofs or experimental results, depending on what is relevant to your problem.

Your report grade is broken down as follows:

• [5pts] Format. Is the report 6 pages long, including references? Is it prepared in the two-
column ACM conference style (sigconf)? Does it follow the standard format for an academic
paper?

• [5pts] Clarity. Does the report clearly communicate its main points, insights, and results?
Is the report easy to read? Is there a logical flow between ideas and different parts of the
report? Does the report cushion heavily technical details with motivating context? Can a
reader understand how each part of the report relates to the whole? Does the report reflect
an effort to state things understandably?

• [10pts] Depth. Is there meaningful technical depth, work, or insights related to MCMC in
the report? Does the report reflect a deep understanding of the area being discussed? Are the
techniques (or, in the case of a survey paper, the synthesis) non-trivial and insightful, going
beyond simply restating existing results and ideas? Is there sufficient detail for a reader be
convinced of the conclusions and synthesis the report is claiming?

– Implementation: Do the experiments conducted go beyond the work of the original
paper(s) in an interesting way? (New datasets, new algorithm variants, etc.?) Are the

1ACM Master Template: https://www.acm.org/publications/proceedings-template.
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experiments comprehensive and convincing?

– Survey: Does the survey make thoughtful connections between the papers surveyed?
Are the surveyed papers connected to the overarching question?

– Research: Are non-trivial new results presented? Are challenges and obstacles encoun-
tered discussed?

Presentation Guidelines

The presentation will be given in class. Each will last 15–25 minutes long, depending on the number
of project groups. Presentations should be given in the style of a conference talk (i.e., given to an
informed audience that may not be aware of your specific area of research). If you have multiple
group members, you will each be expected to speak a reasonable amount during the presentation.
Your presentation grade is based both on instructor and peer evaluation, broken down as follows:

• [2pts] Motivation. Is the project topic well motivated using real applications? Does the
audience understand why they should be interested in the work?

• [5pts] Clarity. Are the main points well presented and communicated? Is it clear what the
main ideas are? Does the presentation flow easily? Do the slides avoid large walls of text,
instead acting as complementary support to what is being said?

• [5pts] Depth. Are the details of the project well presented and communicated? Are the
relevant details, methods, themes, etc. discussed? If the audience were to be quizzed on the
content of the problems, papers, or methods discussed, would they score well?

• [3pts] Quality. Is the project a relevant and interesting problem? Are the results and insights
non-trivial, or do they simply mimic what already exists? Does the presentation communicate
a thorough understanding of the work and related areas?

• [5pts] Peer Evaluation. Each audience member will be answering “How clear was this pre-
sentation?” on a scale of 1–5. This is an average of those scores for your presentation.

• [10pts] Completed Peer Evaluations. You will receive 2.5pts for completing a peer evaluation
on each of the four presentation days.

Project Ideas

The following is a list of topic areas and relevant papers to get you started on finding a project
topic. This list is not comprehensive, and you are not limited to these topic areas and ideas.

• More examples of MCMC random sampling. Generating random spanning trees [1, 8, 14, 53].
Sampling on matroids [4, 16,30].

• More examples of mixing time analysis. Coupling and path coupling for graph coloring [15,25,
51]. Coupling for lozenge tilings and card shuffling [54]. Conductance (and the impossibility
of efficient coupling) for graph matchings [33]. Coupling from the past for perfect rejection
sampling [17,18]. On trees [38].
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• More methods for bounding mixing times. Evolving sets [40] and applications to graph clus-
tering [2, 3]. The log-Solobev inequality [11, 19, 30]. Nash inequalities [12]. The Dobrushin
uniqueness condition [23,52].

• Proving slow mixing. On the Swendsen-Wang process [22]. For independent sets [7, 20]. A
lower bound for Glauber dynamics [24].

• More on the Ising model. Polynomial-time approximation algorithms [29]. On trees [37, 38,
44,46].

• More on card shuffling and magic tricks. Generating random permutations [13]. Top-to-
random shuffling [10]. The Dovetail shuffle [5]. The Thorp shuffle [41, 42]. The Kruskal
Count [34,39].

• Computational geometry. Volume [35] and surface area [6] computation of convex bodies.

• Cryptography and security. Catching wild kangaroos [34,39]. The discrete log problem [31,32].

• Computer graphics. Scene rendering and path space MCMC integration [27,28].

• Optimization and machine learning. The knapsack problem [43]. Simulated annealing [48,49]
and simulated tempering [21,36]. Asynchronous and parallel MCMC [9,50]. Deep learning [26,
45,47].
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