Compression in Self-Organizing Particle Systems

JOSHUA J. DAYMUDE

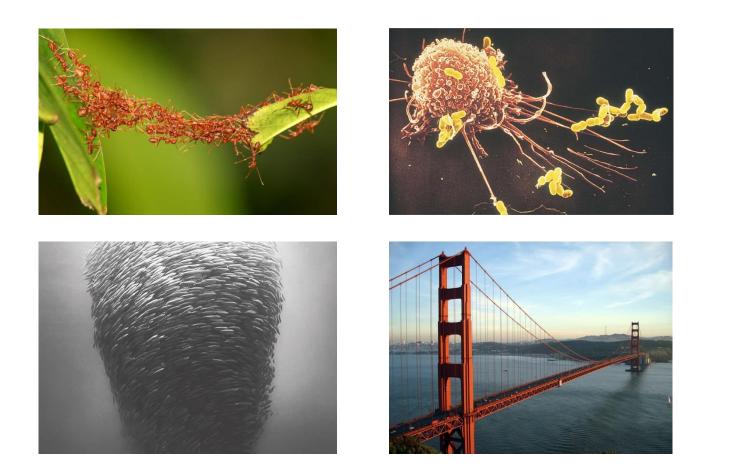
BARRETT UNDERGRADUATE HONORS THESIS

APRIL 6^{TH} , 2016

Motivation

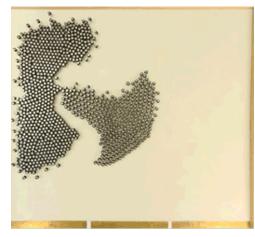
Compression in Self-Organizing Particle Systems

Inspirations & Applications



Compression in Self-Organizing Particle Systems

Current Programmable Matter

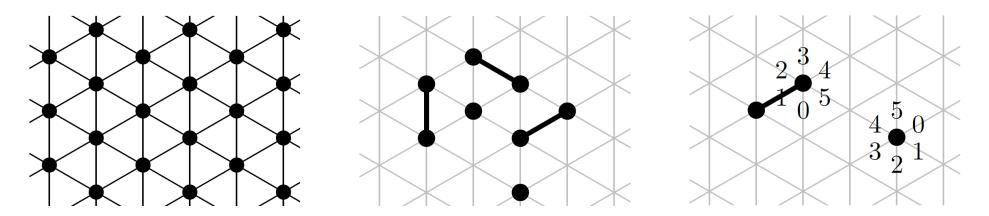


Compression in Self-Organizing Particle Systems

The Amoebot Model

Particles are:

- Anonymous (no unique identifiers)
- Without global orientation or compass (no shared sense of "north")
- Limited in memory (constant size)
- Activated asynchronously

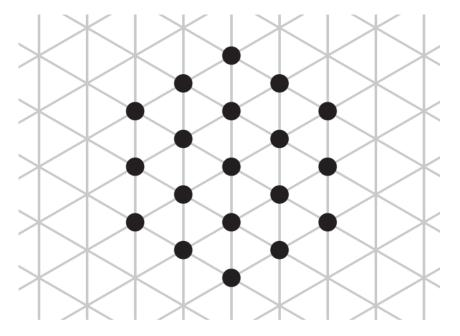


The Compression Problem

Problem: Given a particle system that is initially connected, "gather" the particles as tightly as possible.

Many possible formal interpretations of this:

- Minimize the diameter?
- Minimize the perimeter?
- Maximize the total number of edges formed?
- Maximize the number of induced triangles?
- Eliminate all holes?



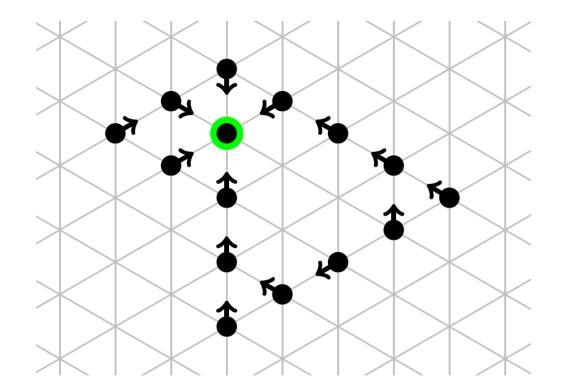
Overview

Two early approaches:

- 1. Local Compression: particles satisfy local rules to achieve global structure
- 2. Hole Elimination: particles detect and eliminate holes contained in their structure

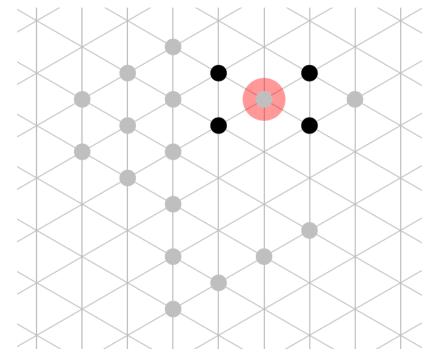
Spanning Forest Primitive

Gives particles a sense of orientation that otherwise does not exist.



Goal

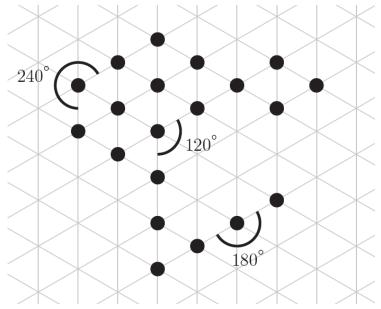
Definition: A particle system is said to be *locally compressed* if every particle *p* is *particle compressed*; that is, (1) *p* does not have exactly five neighbors, and (2) the graph induced by *N(p)* is connected.



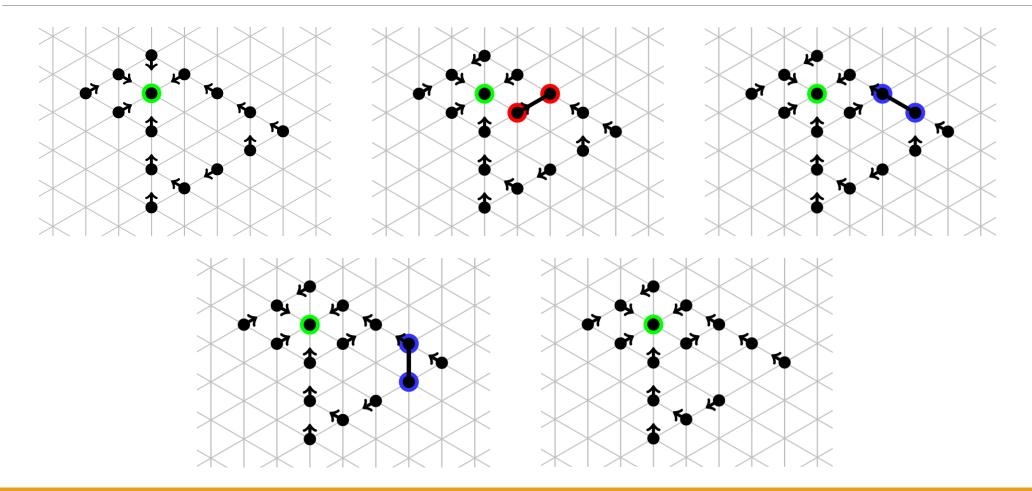
Goal (cont.)

Definition: A particle system is said to be *convex* if every external angle α on the outer border of the system has $\alpha \ge 180^{\circ}$.

Lemma: If a particle system is locally compressed, then it forms a convex configuration containing no holes.



Algorithm Description



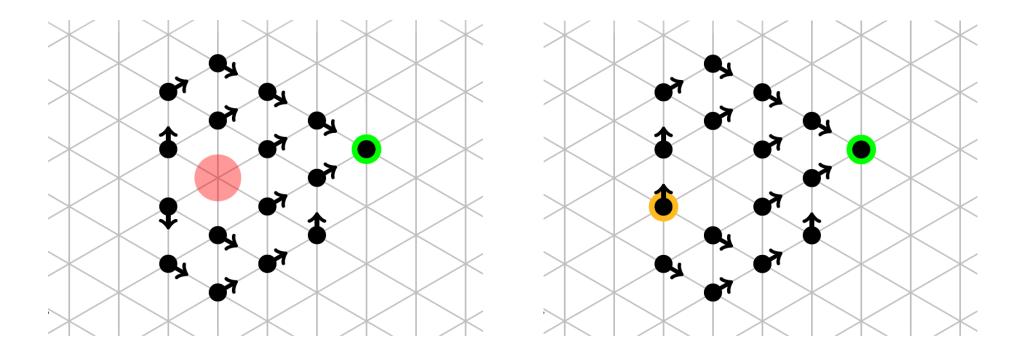
Compression in Self-Organizing Particle Systems

Introduction Background & Model Early Approaches Markov Chain Algorithm Leader Election Conclusion

Local Compression Hole Elimination

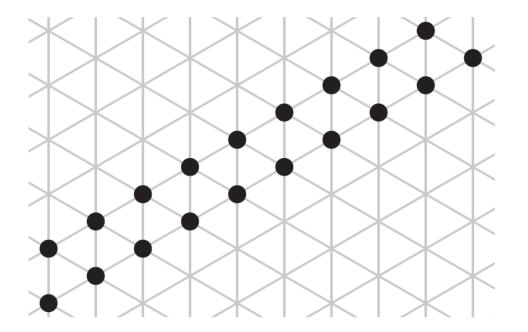
Algorithm Description (cont.)

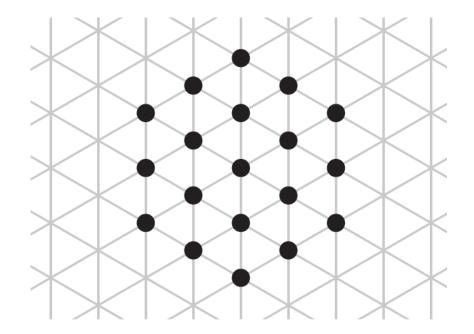
Leaf switching is required when a hole is bounded entirely by leaves.



Results

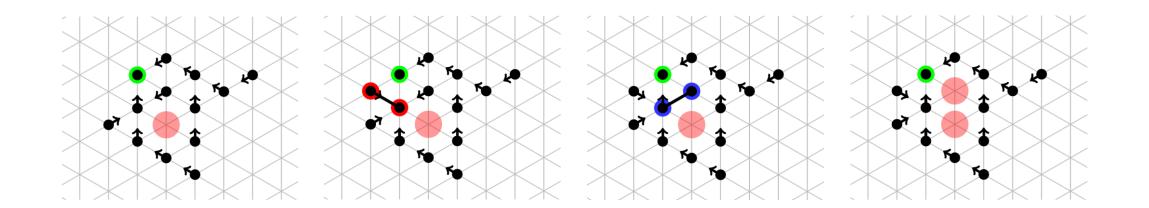
When compression is interpreted as convex and containing no holes, it is too permissive.





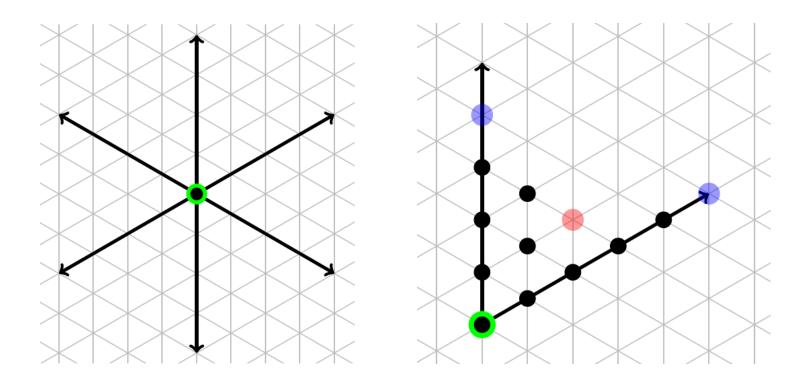
Results (cont.)

The Local Compression algorithm has the tendency to oscillate ad infinitum.



Goal

Definition: A particle system is said to have achieved *hole elimination* if it contains no holes.

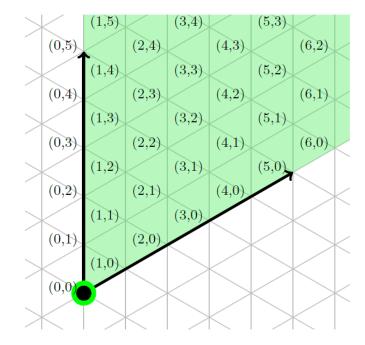


Algorithm Description

[Refer to SOPS Simulator for live demo.]

Correctness Results

Definition: For any wedge *W*, the coordinate system $C : \{ (x,y) : x,y \in \mathbb{N} \} \rightarrow W$ is defined as in the figure below. We define a relation \leq on the locations $(x,y), (x',y') \in C$ as follows:



 $(x,y) \leq (x',y') \iff x \leq x' \land y \leq y'.$

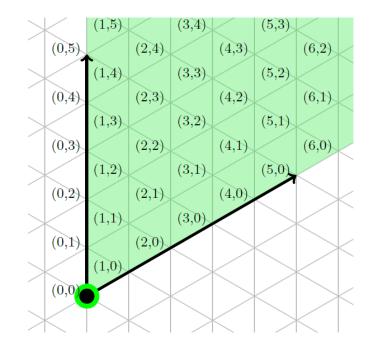
Compression in Self-Organizing Particle Systems

Correctness Results

Lemma: If a location (x,y) in a wedge W is docking, then every location (x',y') such that (x',y') < (x,y) is occupied by a finished particle.

Theorem: A particle system entirely composed of finished particles contains no holes.

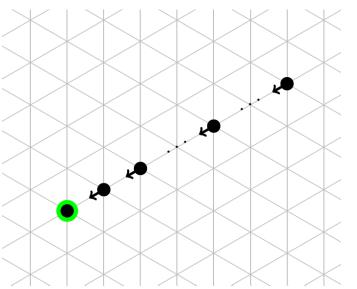
Proof sketch. If a hole did exist, then there exists a location (x,y) in the hole such that (x+1,y) is occupied by a finished particle, contradicting Lemma 2. Therefore, the hole could not have existed in the first place.

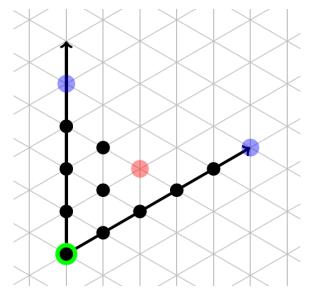


Convergence Results

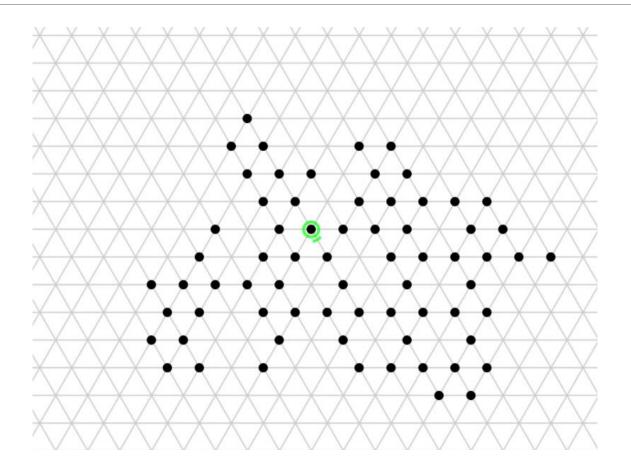
Lemma: Every particle in a spanning tree of size k will become either finished or walking after O(k) rounds.

Theorem: Hole Elimination terminates in the worst case of $\Theta(n)$ rounds, where n is the number of particles in the system.





Competitive Analysis

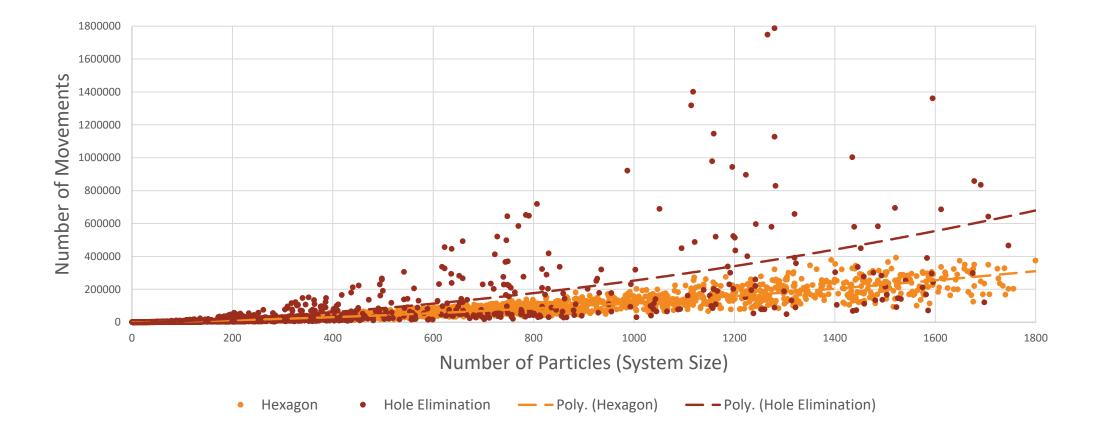


Compression in Self-Organizing Particle Systems

Introduction Background & Model Early Approaches Markov Chain Algorithm Leader Election Conclusion

Local Compression Hole Elimination

Competitive Analysis (cont.)



Compression in Self-Organizing Particle Systems

Goal

Definition: Given an $\alpha > 1$, a connected configuration σ on n particles is said to be α -compressed if $p(\sigma) \le \alpha \bullet p_{min}(n)$.

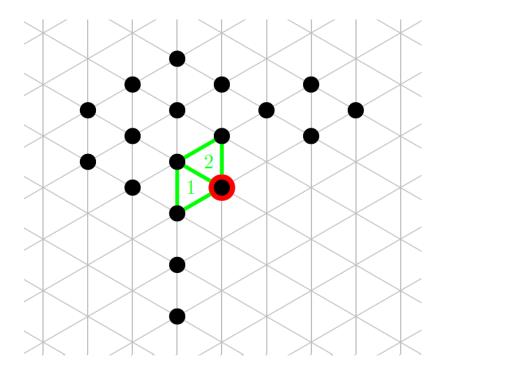
Definition: Given an $0 < \alpha < 1$, a connected configuration σ on n particles is said to be α -expanded if $p(\sigma) \ge \alpha \bullet p_{max}(n)$.

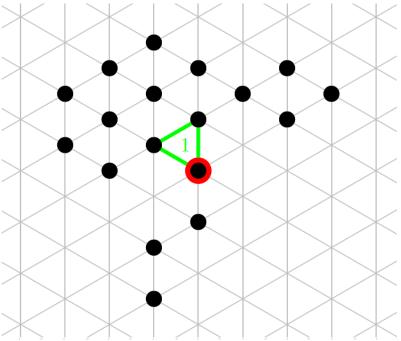
Lemma: For a connected configuration σ on n particles which contains no holes, the number of triangles $t(\sigma) = 2n - p(\sigma) - 2$.

Corollary: $t(\sigma)$ is maximized when $p(\sigma) = p_{min}(n)$.

Markov Chain M

Input is a starting configuration σ_0 which is connected and contains no holes, and a bias parameter $\lambda > 1$. Choices are made with probability $\lambda^{t'-t}$.





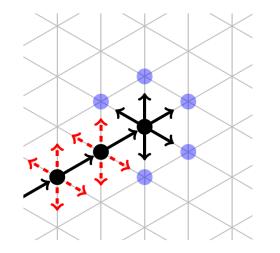
Results

Theorem: Markov chain *M* is *ergodic*, meaning it is *irreducible*—that is, for any configurations x,y there exists a t such that $P^t(x,y) > 0$ —and *aperiodic*, that is, for any configurations x,y the g.c.d. { t : $P^t(x,y) > 0$ } = 1.

Theorem: The stationary distribution π of M is given by

$$\pi(\sigma) = \frac{\lambda^{t(\sigma)}}{Z} = \frac{\lambda^{-p(\sigma)}}{Z'}, \text{ where } Z = \sum_{\sigma} \lambda^{t(\sigma)} \text{ and } Z' = \sum_{\sigma} \lambda^{-p(\sigma)}$$

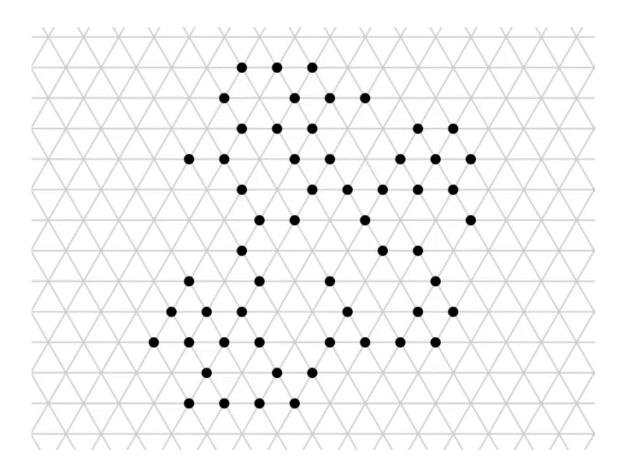
Lemma: The number of connected configurations with no holes and perimeter k is at most 5^k.



Theorem: For any $\alpha > 1$, there exists a $\lambda^* = 5^{a/(a-1)} > 5$, $n^* \ge 0$, and $\gamma < 1$ such that for all $\lambda > \lambda^*$ and $n > n^*$, the probability that a random sample σ drawn according to the stationary distribution π of M is not α -compressed is exponentially small:

$$\mathbb{P}(p(\sigma) \ge \alpha \bullet p_{\min}(n)) < \gamma^{\sqrt{n}}.$$

Obtaining a Seed



Future Work

For the Markov chain algorithm for compression:

- Further improve the bounds for λ in search of a critical value λ_c .
- Proofs of time complexity using distributed computing techniques.

For the problem of compression in general:

• Generalize to higher dimensions (3D is practical)

References

- 1. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in a thousand-robot swarm. *Science*, 345(6198):795-799, 2014.
- 2. John W. Romanishin, Kyle Gilpin, and Daniela Rus. M-Blocks: Momentum-driven, Magnetic Modular Robots.
- 3. Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andrea W. Richa. A markov chain algorithm for compression in self-organizing particle systems. CoRR, abs/1603.07991, 2016.
- 4. Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andrea W. Richa, and Christian Scheideler. Leader election and shape formation with self-organizing programmable matter. In DNA Computing and Molecular Programming – 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, pages 117-132, 2015.
- 5. Zahra Derakhshandeh, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Strothmann. An algorithmic framework for shape formation problems in self-organizing particle systems. In *Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM'15, Boston, MA, USA, September 21-22, 2015,* pages 21:1-21:2, 2015.

Thank you!

Compression in Self-Organizing Particle Systems