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Current Programmable Matter

RCN 2014:  “Programmable self-assembly in a thousand-robot swarm”RGR 2013: "M-blocks: Momentum driven, magnetic modular robots"
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Current Programmable Matter
Programmable matter systems can be passive or active:

• Passive: no movement control, depends on environment.

• Active: can control actions and movements to solve problems.

Self-Organizing Particle System: 

• Abstraction of active programmable matter systems.

• Simple computational units -> coordinated behavior.

• Constrain individual’s abilities to ask what’s possible.

RCN 2014:  “Programmable self-assembly in a thousand-robot swarm”
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The Amoebot Model
Particles move by expanding and contracting, and are:

• Anonymous (no unique identifiers)

• Without global orientation or compass (no shared sense of “north”)

• Limited in memory (constant size)

• Activated asynchronously
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Previous Work in the Amoebot Model
Deterministic* algorithms exist for:

• Shape formation (triangles, hexagons, etc.).

• Evenly coating objects (infinite, bounded, and closed). 

• Leader election (with high probability).

Stochastic algorithms exist for:

• Compression, or gathering a particle system together as tightly as possible.

• Shortcut bridging (this talk).

* some randomization is used

See 
sops.engineering.asu.edu

for simulations!
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Why Stochastic?
An example from compression: form a configuration whose perimeter is as small as possible 
(same thing as gathering as tightly as possible).

α
O(sqrt(|P|)) 2 1
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Why Stochastic?
Perimeter is a global property, but our particles are limited to local communication.

• Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.

• First attempt: particles move to positions where they have more neighbors.

e(σ) = 171
p(σ) = 126

e(σ) = 246
p(σ) = 51
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Why Stochastic?
Perimeter is a global property, but our particles are limited to local communication.

• Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.

• First attempt: particles move to positions where they have more neighbors.

• …However, need something more robust to local minima.
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Markov Chains
• A Markov chain is a memoryless random process that undergoes transitions between states 

in some state space.
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Markov Chains
• A Markov chain is a memoryless random process that undergoes transitions between states 

in some state space.

• In our context, states are particle system configurations, and transitions between them are 
individual particle movements.

Introduction            Background & Model Problem Statement            Algorithm & Results            Analysis            Conclusion

Stochastic Shortcut Bridging in Programmable Matter ACO Student Seminar – October 6th, 2017



Markov Chains for Particle Systems
Turn a Markov chain (global, step-by-step) into a local, distributed, asynchronous algorithm:

• Carefully define the Markov chain to only use local moves.

Markov chain algorithm:

Starting from any configuration, repeat:

1. Choose a particle at random.

2. Expand into a (random) unoccupied 
adjacent position.

3. Perform some arbitrary, bounded 
computation involving its neighborhood.

4. Contract to either the new position or the 
original position.

Distributed algorithm:

Each particle concurrently and continuously 
executes:

2. Expand into a (random) unoccupied 
adjacent position.

3. Perform some arbitrary, bounded 
computation involving its neighborhood.

4. Contract to either the new position or the 
original position.
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Markov Chains for Particle Systems
Turn a Markov chain (global, step-by-step) into a local, distributed, asynchronous algorithm:

• Carefully define the Markov chain to only use local moves.

Markov chain algorithm:

Starting from any configuration, repeat:

1. Choose a particle at random.

2. Expand into a (random) unoccupied 
adjacent position.

3. If certain properties hold, contract to new 
position with probability Pr[move].

4. Else, contract back to the original position.

Distributed algorithm:

Each particle concurrently and continuously 
executes:

2. Expand into a (random) unoccupied 
adjacent position.

3. If certain properties hold, contract to new 
position with probability Pr[move].

4. Else, contract back to the original position.
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Our Results: Shortcut Bridging
Reid et al. looked at army ants (Eciton) and how they self-assemble bridges. They found:

• Ants build the bridges to shorten the path distance other ants travel…

• …but to do so they take ants out of the workforce.

• Tradeoff: make the total path shorter, but without sacrificing too many workers.

RLPKCG 2015: “Army ants dynamically adjust living bridges…”
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Our Results: Shortcut Bridging
Our Contribution: A stochastic, distributed, local, asynchronous algorithm for shortcut bridging 
in which particles maintain self-assembled bridges over gaps, balancing:

• The benefit of a shorter path.

• The cost in ant workers of a longer bridge.

RLPKCG 2015: “Army ants dynamically adjust living bridges…”
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The Shortcut Bridging Problem
We first need to add some problem-specific things to the model:

• Land and gap positions.

• Fixed objects (to anchor the particle system to land).
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The Shortcut Bridging Problem
Goal: Dynamically adapt bridges to balance the benefit of a shorter path with the loss of ant 
workers. 

• We’ll minimize both the total perimeter p(σ) and the gap perimeter g(σ).

Min p(σ)

Max g(σ)

Max p(σ)

Min g(σ)
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The Shortcut Bridging Problem
Goal: Dynamically adapt bridges to balance the benefit of a shorter path with the loss of ant 
workers. 

• Formally, minimize weighted perimeter p’(σ,c) = p(σ) + c · g(σ), where c > 0.

Min p(σ)

Max g(σ)

Max p(σ)

Min g(σ)
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The Shortcut Bridging Algorithm
Input: an initial (connected, hole-free) configuration σ0 and bias parameters λ, γ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If this position is occupied, go to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λ-Δp γ-Δg}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) γ-g(σ) .

Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.

Metropolis filter 
(calculated w/ local info) Proof: Detailed Balance

Proof: Peierls argument
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Simulation: Shortcut Bridging, λ = 4, γ = 2
A particle system initially fully on a V-shaped land mass after (a) 2 million, (b) 4 million, (c) 6 
million, and (d) 8 million iterations. 
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Simulation: Shortcut Bridging, λ = 4, γ = 2
A particle system initially fully on an N-shaped land mass after 10 million and 20 million 
iterations. 
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Dependence on Gap Angle
• For the Eciton army ants, the bridge which optimizes the 

tradeoff depends on the angle of the gap being shortcut.

• We proved similar behavior in our algorithm.

Simulations with λ = 4 and γ = 2 for angles of 30°, 60°, and 90°:
RLPKCG 2015: “Army ants dynamically…”
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Dependence on Gap Angle
Theorem: For any λ > 2 + sqrt(2) and γ > 1, there’s an angle θ1 (which depends on λ and γ) such 
that our algorithm has an exponentially small probability of forming a bridge “close to land” 
over any gap of smaller angle.

Theorem: For any λ > 2 + sqrt(2) and γ > (2 + sqrt(2))4 λ4, there’s a constant θ2 > 60° such that 
our algorithm has an exponentially small probability of forming a bridge “far from land” over any 
gap with angle 60° < θ < θ2.

angle distance
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Local Properties for Movement
Input: an initial (connected, hole-free) configuration σ0 and bias parameters λ, γ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If this position is occupied, go to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λ-Δp γ-Δg}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) γ-g(σ) .

Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.
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Local Properties for Movement
Qualitatively, what things do we not want to happen to our particle system? 

• The particle system could become disconnected (within itself or from the land).

• A hole could be formed in the particle system.

• A move could be made which couldn’t be “undone” (bad for reversibility).
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Local Properties for Movement
Allowed: Moves that avoid bad outcomes are either “slides” (1-2 pivots) or “jumps” (0 pivots).

1 pivot 2 pivots no pivot
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Local Properties for Movement
Not allowed: Moves that lead to disconnections or holes, or which are irreversible.

1. Current location should not have 5 neighbors (forms a hole).

2. 1-2 pivots: all neighbors should be locally connected to a pivot.

3. No pivot: both locations should have locally connected neighborhoods.
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The Stationary Distribution
Input: an initial (connected, hole-free) configuration σ0 and bias parameters λ, γ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If this position is occupied, go to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λ-Δp γ-Δg}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) γ-g(σ) .

Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.
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The Stationary Distribution
Our local rules for movement give us that:

• The particle system remains connected and anchored to the land objects.

• No holes form in the system.

• All moves are reversible.

Conjecture: It is possible to go from any particle system configuration which is anchored to the 
land objects to any other such configuration.

Theorem: The Markov chain is ergodic, and thus has a unique stationary distribution π.
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The Stationary Distribution
A Metropolis filter can be used to design the right transition probabilities to obtain a desired π.

• Recall: we want to minimize weighted perimeter p’(σ,c) = p(σ) + c · g(σ), where c > 0.

• So set the desired weight of a configuration at stationarity to be π(σ) ~ η-p’(σ,c) , with η > 1.

π(σ) ~ η-p’(σ,c) = η-p(σ) - c · g(σ) = η-p(σ) · ηc · -g(σ) = λ-p(σ) γ-g(σ) , with λ, γ > 1.

• Set the transition probability from σ to τ using a Metropolis filter:

P(σ,τ) = Pr[(σ to τ) being proposed] · min{ 1, π(τ) / π(σ) } = (1/6n) · min{ 1, π(τ) / π(σ) }.

• Now, we can use what we want π to look like:

π(τ) / π(σ) = (λ-p(τ) γ-g(τ) / Z) / (λ-p(σ) γ-g(σ) / Z) = λ-p(τ) + p(σ) γ-g(τ) + g(σ) = λ-Δp γ-Δg .
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Detailed Balance
Input: an initial (connected, hole-free) configuration σ0 and bias parameters λ, γ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If this position is occupied, go to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λ-Δp γ-Δg}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) γ-g(σ) .

Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.
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Detailed Balance
Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) γ-g(σ) .

How do we know the Metropolis filter gets us where we want to go?

Proof:

• π is the stationary distribution if π(σ) P(σ,τ) = π(τ) P(τ,σ).

• Without loss of generality, suppose λ p(σ) - p(τ) γ g(σ) - g(τ) ≤ 1. Then:

π(σ) P(σ,τ) = (λ-p(σ) γ-g(σ) / Z) · (1/6n) · min{ 1, λ p(σ) - p(τ) γ g(σ) - g(τ) }

π(σ) P(σ,τ) = (λ-p(σ) γ-g(σ) λ p(σ) - p(τ) γ g(σ) - g(τ) / Z) · (1/6n)

π(σ) P(σ,τ) = (λ-p(τ) γ-g(τ) / Z) · (1/6n) · 1

π(σ) P(σ,τ) = π(τ) P(τ,σ).
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Correctness: A Peierls Argument
Input: an initial (connected, hole-free) configuration σ0 and bias parameters λ, γ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If this position is occupied, go to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λ-Δp γ-Δg}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) γ-g(σ) .

Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.
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Correctness: A Peierls Argument
Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.

How do we know our algorithm actually minimizes weighted perimeter?

Proof sketch:

• Let Sα be the set of configurations σ with p’(σ,c) > α · p’min (i.e., the bad ones).

• We’ll show that it is exponentially unlikely to be in such a bad configuration, i.e.:

π(Sα) ≤ δsqrt(n), where δ < 1.

• Let p’1, p’2, …, p’m be all the possible values of p’(σ,c) = p(σ) + c · g(σ).

• Let Ai be the set of “bad” configurations in Sα with p’(σ,c) = p’i.

• How many configurations are in Ai?
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Correctness: A Peierls Argument
Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.

Proof sketch:

• Theorem: (from compression). There are at most f(p)(2 + sqrt(2))p configurations with 
perimeter p, where f is subexponential.

• Any configuration σ in Ai has perimeter p(σ) ≤ p(σ) + c · g(σ) = p’i , so:

|Ai| ≤ f(p’i)(2 + sqrt(2))p’i

• Now we can calculate π(Ai):

π(Ai) = λ-p(σ) γ-g(σ) · |Ai| / Z ≤ λ-p(σ) γ-g(σ) · f(p’i)(2 + sqrt(2))p’i / Z.
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Correctness: A Peierls Argument
Theorem: For any α > 1, there are λ and γ (depending on α and c) so that in the stationary 
distribution π(σ) ~ λ-p(σ) γ-g(σ) we have p’(σ,c) ≤ α · p’min with high probability.

Proof sketch:

• The last step is to sum up all the π(Ai) values to find π(Sα).

• There are m ≤ O(n2) of them, since both O(sqrt(n)) ≤ p(σ), g(σ) ≤ 2n-2.

• Carrying out the algebra from there, we get:

π(Sα) = ∑i=1,…,m π(Ai) ≤ … ≤ f(n) δsqrt(n).
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Stochasticity in Programmable Matter
(Recall) Stochastic algorithms exist for:

• Compression, or gathering a particle system together as tightly as possible. (Cannon, 
Daymude, Randall, and Richa @ PODC 2016).

• Shortcut bridging, what we saw in this talk. (Andrés Arroyo, Cannon, Daymude, Randall, and 
Richa @ DNA23).
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Stochasticity in Programmable Matter
Advantages of the stochastic, distributed, local approach:

• Completely decentralized (no leader necessary for coordination).

• Robust to crash/deletion failures and is self-stabilizing.

• Very little communication needed (1 bit is used for conflict resolution).
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Stochasticity in Programmable Matter
Good candidate problems for the stochastic, distributed, local approach:

• Desired behavior optimizes some global energy function. For example, in shortcut bridging:

minimize total perimeter and minimize gap perimeter -> π(σ) ~ λ-p(σ) γ-g(σ).

• Changes in global energy resulting from one-step transitions can be calculated using only 
local information. For example, in shortcut bridging:

π(σ) ~ λ-p(σ) γ-g(σ) -> move with probability min{1, λ-Δp γ-Δg}.
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Future Work & Open Questions
Further extensions of our stochastic approach:

• Explore systems with heterogenous bias parameters.

• Investigate behaviors when particles can change their bias parameters over time.

• Mix this stochastic approach with non-stochastic elements.

What is the mixing time of our compression and shortcut bridging chains?

• Seems difficult to analyze, though in compression simulation it’s ≈ O(n3.3).

Are there critical values for λ and γ (or the ratio between them) which cause a phase transition?
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Collaborators

Andréa W. Richa Joshua J. Daymude Dana Randall Sarah Cannon Marta Andrés Arroyo
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Introduction            Background & Model            Problem Statement            MC for Compression            Shortcut Bridging            Conclusion

Thank you!
sops.engineering.asu.edu
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