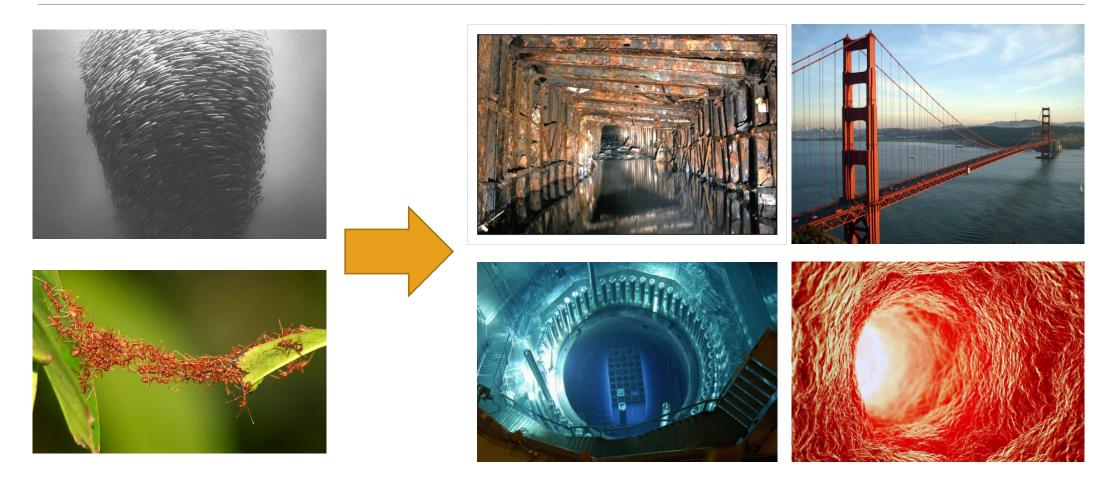
Local Stochastic Algorithms for Compression and Shortcut Bridging in Programmable Matter

JOSHUA J. DAYMUDE AND ANDRÉA W. RICHA – ARIZONA STATE UNIVERSITY SARAH CANNON AND DANA RANDALL – GEORGIA INSTITUTE OF TECHNOLOGY MARTA ANDRÉS ARROYO – UNIVERSITY OF GRANADA

MC for Compression

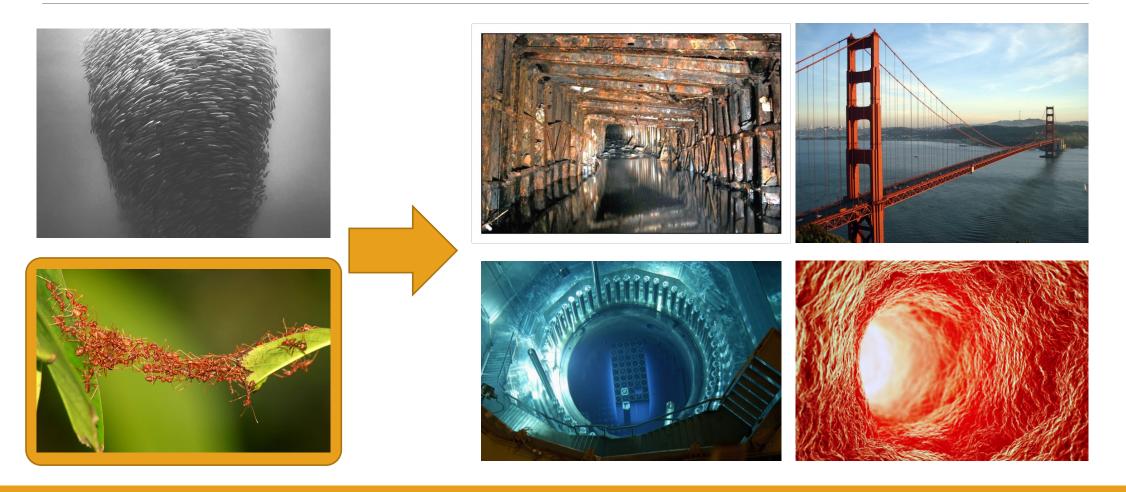
Inspirations & Applications



Local Stochastic Algorithms in Programmable Matter

MC for Compression

Inspirations & Applications

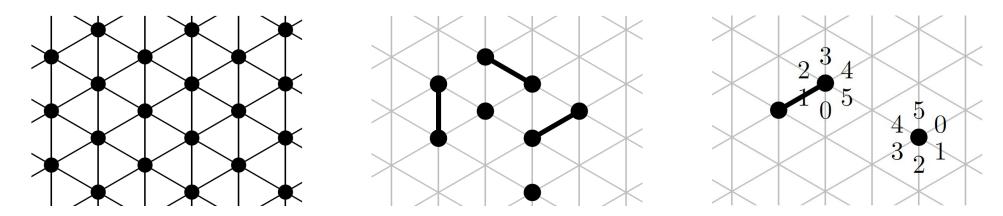


Local Stochastic Algorithms in Programmable Matter

The Amoebot Model

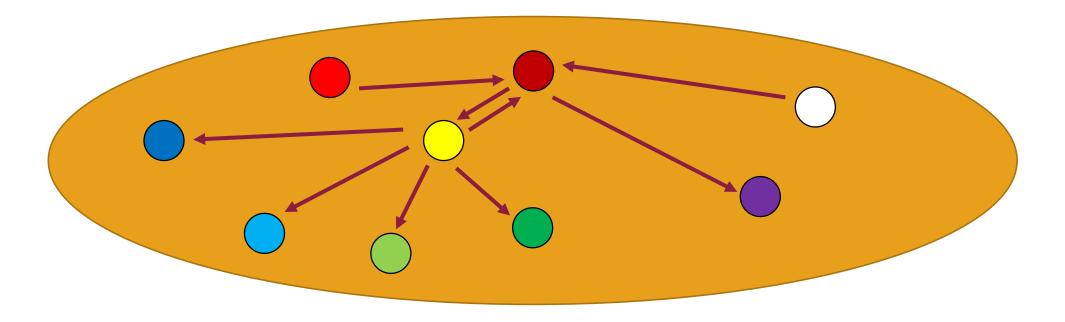
Particles move by *expanding* and *contracting*, and are:

- Anonymous (no unique identifiers)
- Without global orientation or compass (no shared sense of "north")
- Limited in memory (constant size)
- Activated asynchronously



Markov Chains

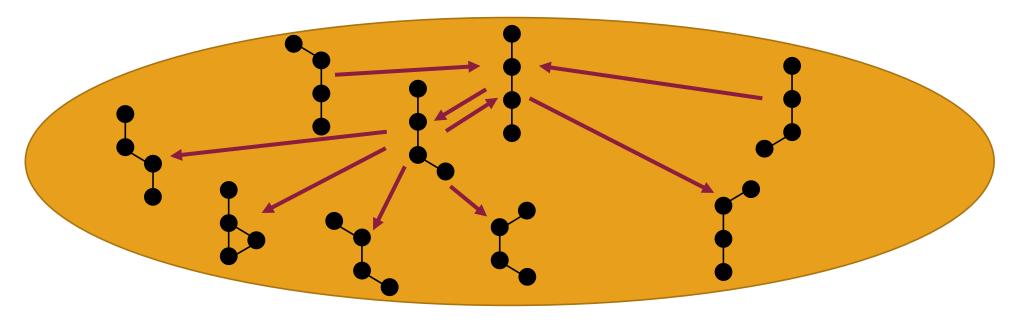
• A *Markov chain* is a memoryless random process that undergoes transitions between states in some state space.



Local Stochastic Algorithms in Programmable Matter

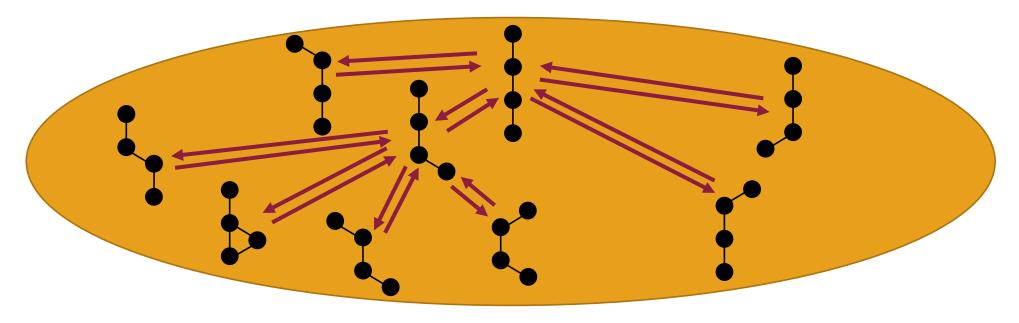
Markov Chains

- A *Markov chain* is a memoryless random process that undergoes transitions between states in some state space.
- In our context, states are *particle system configurations*, and transitions between them are individual particle movements.



Markov Chains

- A *Markov chain* is a memoryless random process that undergoes transitions between states in some state space.
- In our context, states are *particle system configurations*, and transitions between them are individual particle movements.

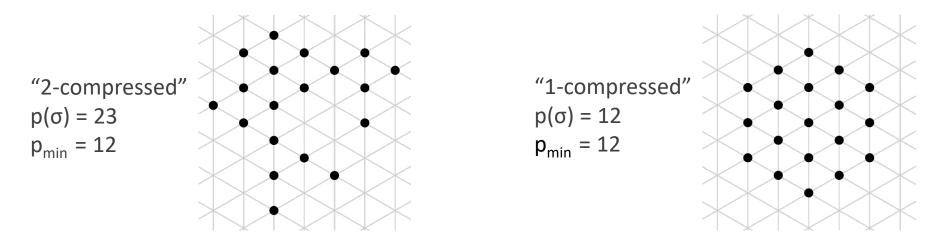


The Compression Problem

Informally: Gather a particle system *P* as tightly together as possible.

Formally:

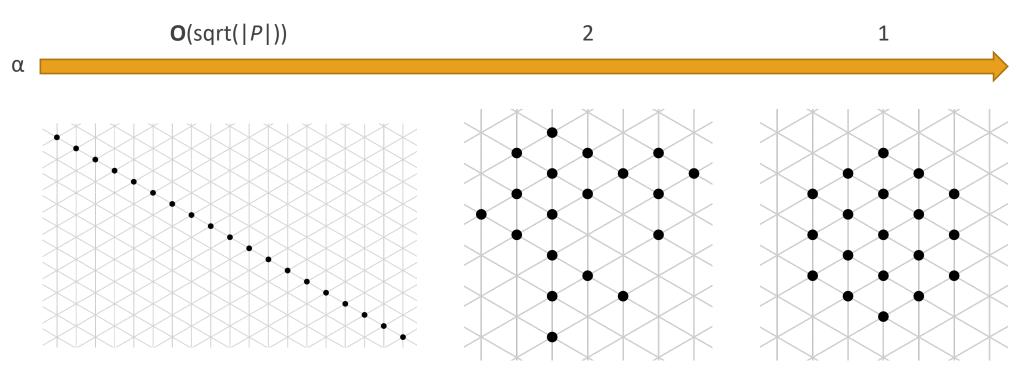
- The *perimeter* of a connected, hole-free configuration σ, denoted p(σ), is the length of σ's outer boundary. Let p_{min} denote the minimum possible perimeter.
- Given a constant $\alpha > 1$, σ is said to be *\alpha-compressed* if $p(\sigma) \le \alpha \cdot p_{min}$.



Local Stochastic Algorithms in Programmable Matter

Our Goal

Goal 1: Given a particle system P and a constant α > 1, reach and remain in a set of configurations which are α-compressed.

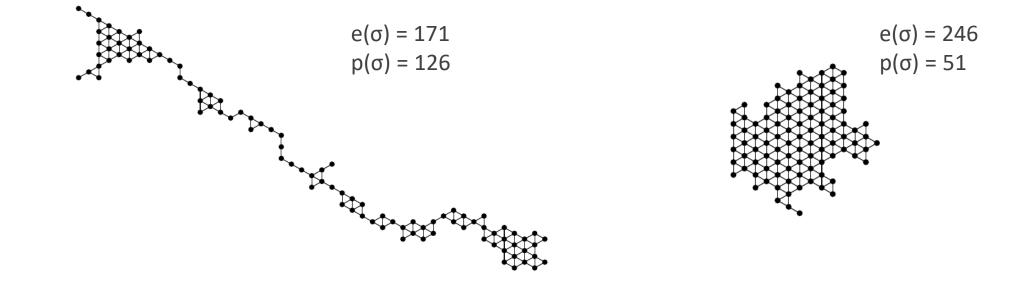


Local Stochastic Algorithms in Programmable Matter

Translating Global To Local

Perimeter is a *global* property, but our particles are limited to *local* communication.

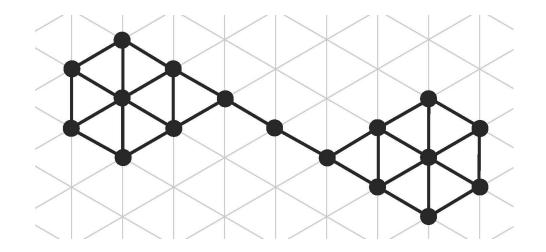
- Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.
- First attempt: particles move to positions where they have more neighbors.



Translating Global To Local

Perimeter is a *global* property, but our particles are limited to *local* communication.

- Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.
- First attempt: particles move to positions where they have more neighbors.
- ...However, need something more robust to local minima.



Markov Chains for Particle Systems

The general framework:

- 1. Choose a particle from the system uniformly at random.
- 2. Choose a direction from {0, ..., 5} and a number p from (0,1) uniformly at random.
- 3. If certain properties hold and p < [probability function], then move in that direction.
- 4. Otherwise, do nothing.

Markov Chains for Particle Systems

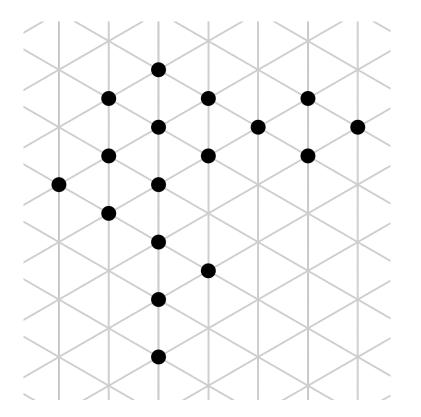
The general framework:

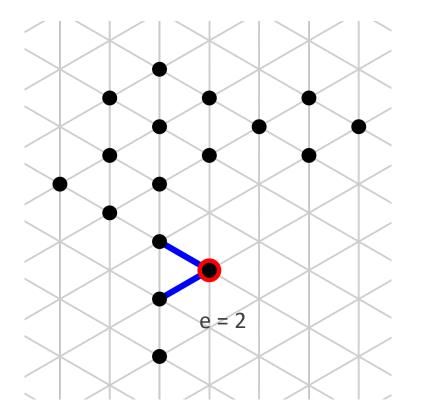
- 1. Choose a particle from the system uniformly at random.
- 2. Choose a direction from {0, ..., 5} and a number p from (0,1) uniformly at random.
- 3. If certain properties hold and p < [probability function], then move in that direction.
- 4. Otherwise, do nothing.

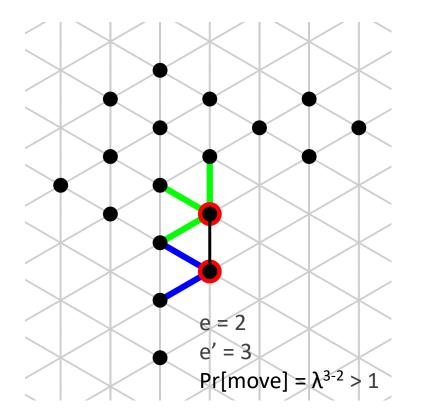
These are customizable for different applications!

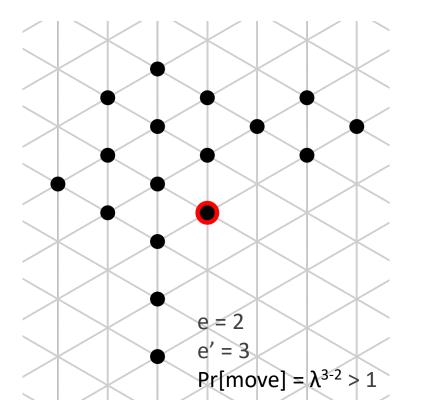
Input: an initial configuration σ_0 (connected, hole-free), and a bias parameter $\lambda > 1$.

- 1. Choose a particle from the system uniformly at random.
- 2. Choose a direction from {0, ..., 5} and a number p from (0,1) uniformly at random.
- 3. If properties for maintaining connectivity and avoiding holes hold and $p < \lambda^{\Delta e}$, then move in that direction.
- 4. Otherwise, do nothing.

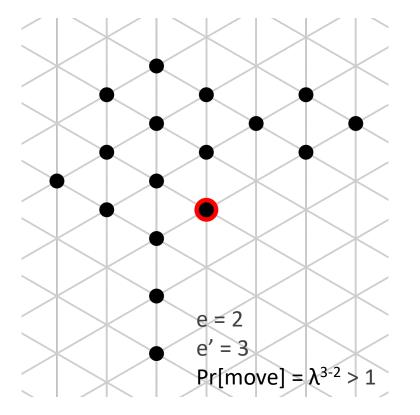


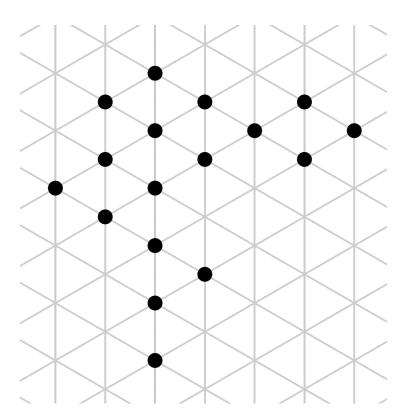






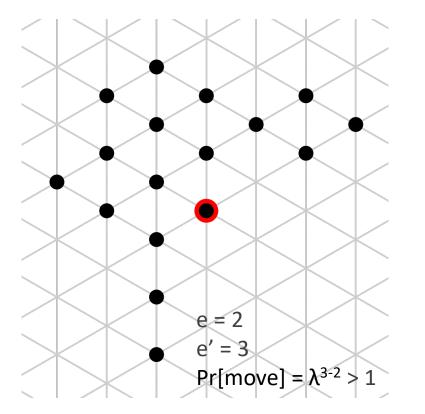
Recall: movement decisions are made with probability $\lambda^{\Delta e}$, where $\lambda > 1$.

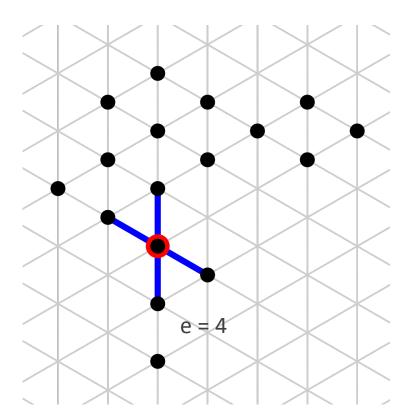




Local Stochastic Algorithms in Programmable Matter

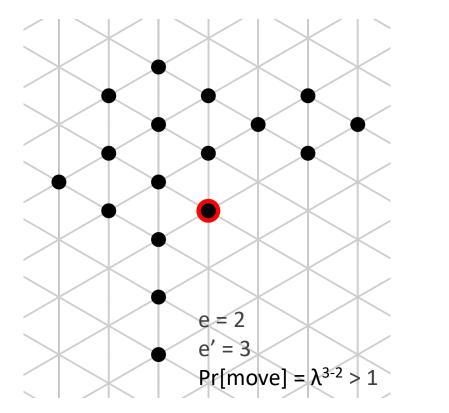
Recall: movement decisions are made with probability $\lambda^{\Delta e}$, where $\lambda > 1$.

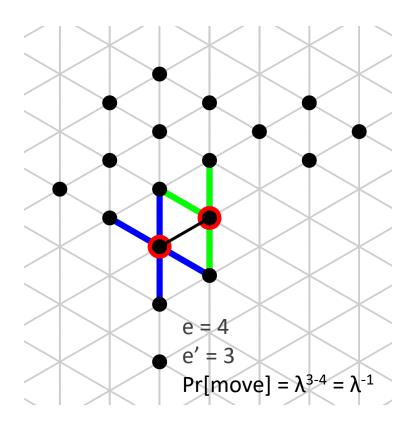




Local Stochastic Algorithms in Programmable Matter

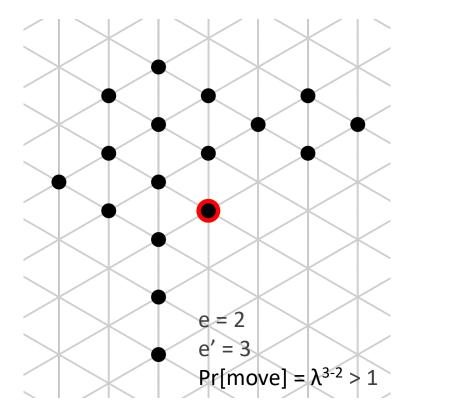
Recall: movement decisions are made with probability $\lambda^{\Delta e}$, where $\lambda > 1$.

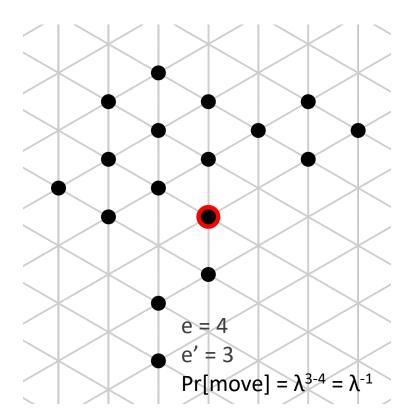




Local Stochastic Algorithms in Programmable Matter

Recall: movement decisions are made with probability $\lambda^{\Delta e}$, where $\lambda > 1$.



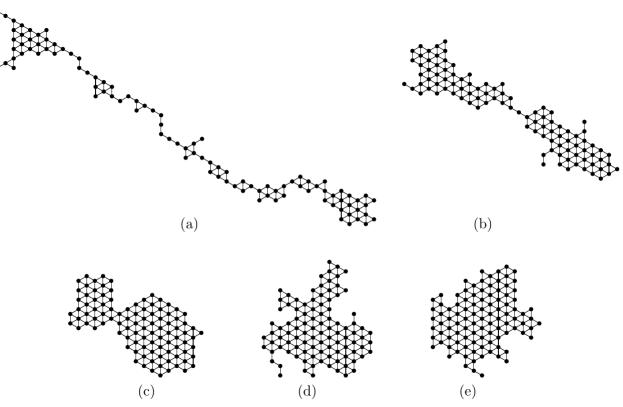


Local Stochastic Algorithms in Programmable Matter

Biological Distributed Algorithms 2017

Simulation: Compression, $\lambda = 4$

100 particles initially in a line after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million iterations.



Local Stochastic Algorithms in Programmable Matter

Theoretical Results

We can use tools from Markov chain analysis to investigate our algorithm's long-run behavior, or stationary distribution π .

- **Theorem:** For any $\lambda > 2 + \text{sqrt}(2)$ with $\pi(\sigma) \sim \lambda^{e(\sigma)}$, there is an $\alpha > 1$ such that, at stationarity, with all but exponentially small probability the particle system is α -compressed.
- **Theorem:** For any $\alpha > 1$, there is a λ such that for $\pi(\sigma) \sim \lambda^{e(\sigma)}$, at stationarity, with all but exponentially small probability the particle system is α -compressed.

Theoretical Results

We can use tools from Markov chain analysis to investigate our algorithm's long-run behavior, or stationary distribution π .

- **Theorem:** For any $\lambda > 2 + \text{sqrt}(2)$ with $\pi(\sigma) \sim \lambda^{e(\sigma)}$, there is an $\alpha > 1$ such that, at stationarity, with all but exponentially small probability the particle system is α -compressed.
- **Theorem:** For any $\alpha > 1$, there is a λ such that for $\pi(\sigma) \sim \lambda^{e(\sigma)}$, at stationarity, with all but exponentially small probability the particle system is α -compressed.

And surprisingly...

 Theorem: For any λ < 2.17 with π(σ) ~ λ^{e(σ)} and any α > 1, at stationarity, the probability that the particle system is α-compressed is exponentially small.

"Expanding" Beyond Compression

The last theorem shows that we can start with a compressed system and push λ below 2.17 to get the opposite behavior: *expansion*.



What else can we do?

Shortcut Bridging: Motivation

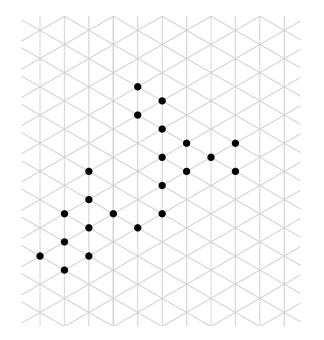
The ants in genus *Eticon* balance shortening their foraging paths with avoiding committing too many ants to the bridge, resulting in a smaller foraging force.

RLPKCG 2015: "Army ants dynamically adjust living bridges..."

Local Stochastic Algorithms in Programmable Matter

Shortcut Bridging: Setting

Similar setting to compression...

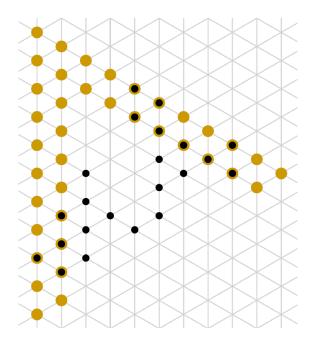


Conclusion

Shortcut Bridging: Setting

Similar setting to compression, but adding:

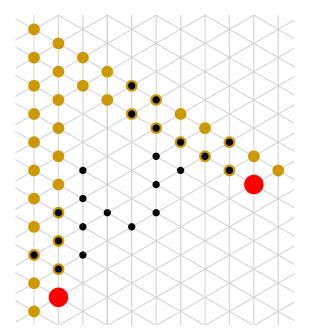
• Land & gap positions.



Shortcut Bridging: Setting

Similar setting to compression, but adding:

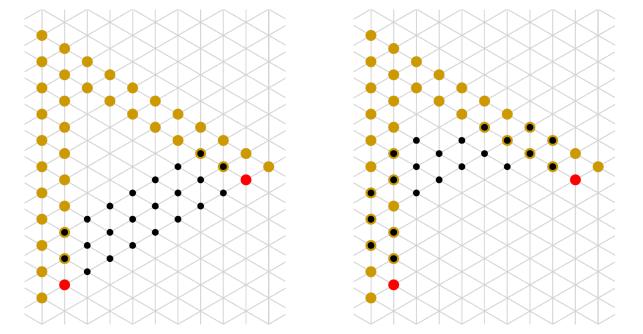
- Land & gap positions.
- Fixed objects (to anchor the particle system to land).

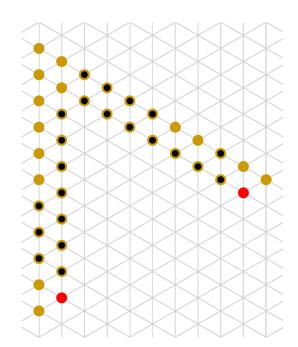


Shortcut Bridging: Problem Statement

Goal 2: Balance two competing objectives:

- Minimizing overall perimeter (controlled by λ, as in compression)
- Minimizing total *gap perimeter* (controlled by γ)





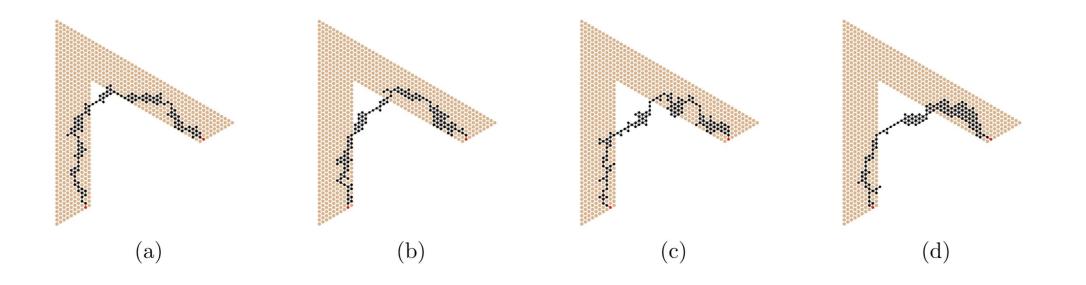
A Markov Chain for Shortcut Bridging

Input: an initial configuration σ_0 (connected, hole-free), and a bias parameters λ , $\gamma > 1$.

- 1. Choose a particle from the system uniformly at random.
- 2. Choose a direction from {0, ..., 5} and a number p from (0,1) uniformly at random.
- 3. If properties for maintaining connectivity and avoiding holes hold and $p < \lambda^{\Delta p} \gamma^{\Delta g}$, then move in that direction.
- 4. Otherwise, do nothing.

Simulation: Shortcut Bridging, $\lambda = 4$, $\gamma = 2$

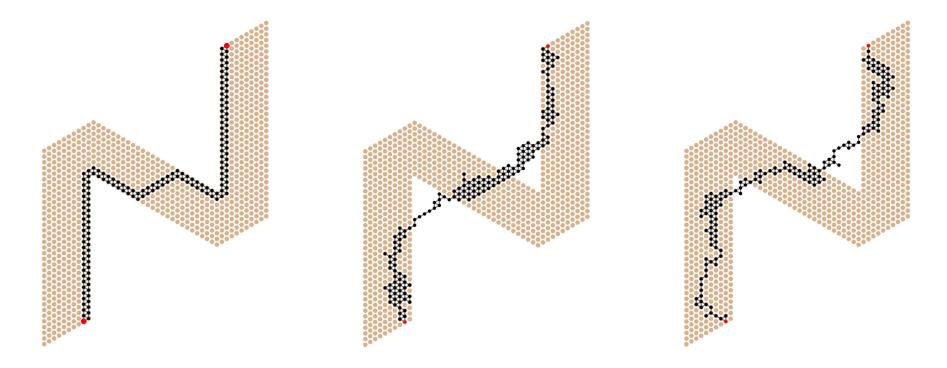
A particle system initially fully on a V-shaped land mass after (a) 2 million, (b) 4 million, (c) 6 million, and (d) 8 million iterations.



Local Stochastic Algorithms in Programmable Matter

Simulation: Shortcut Bridging, $\lambda = 4$, $\gamma = 2$

A particle system initially fully on an N-shaped land mass after 10 million and 20 million iterations.



Local Stochastic Algorithms in Programmable Matter

Simulation: Next to Eticon

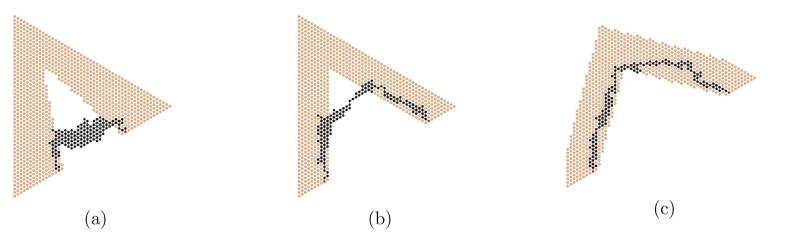
Local Stochastic Algorithms in Programmable Matter

Summary of Theoretical Results

We use a metric called *weighted perimeter*, denoted $p'(\sigma)$, to capture the costs of both total and gap perimeter.

• **Theorem:** For any $\alpha > 1$, there are $\lambda > 2 + \text{sqrt}(2)$ and $\gamma > 1$ such that for $\pi(\sigma) \sim \lambda^{p(\sigma)} \gamma^{g(\sigma)}$, at stationarity, with all but exponentially small probability $p'(\sigma) \le \alpha \cdot p'_{\min}$.

Theorems on angle dependence:



Local Stochastic Algorithms in Programmable Matter

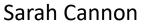
Current & Future Work

- Compression: appeared at PODC '16.
- Shortcut Bridging: accepted to DNA23.
- More extensions of compression, e.g., foraging.
 - Explore systems with heterogenous bias parameters.
 - Investigate behaviors when particles can change their bias parameters over time.
 - Mix this stochastic approach with non-stochastic elements.
- "Active matter": alignment, locomotion, and other emergent behaviors.

Collaborators

Andréa W. Richa Joshua J. Daymude

Dana Randall



Marta Andrés Arroyo

Local Stochastic Algorithms in Programmable Matter

Thank you!

sops.engineering.asu.edu

Local Stochastic Algorithms in Programmable Matter