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Particles move by expanding and contracting, and are:

• Anonymous (no unique identifiers)

• Without global orientation or compass (no shared sense of “north”)

• Limited in memory (constant size)

• Activated asynchronously
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Informally: Gather a particle system P as tightly together as possible.

Formally:

• The perimeter of a connected, hole-free configuration σ, denoted p(σ), is the length of σ’s 
outer boundary. Let pmin denote the minimum possible perimeter.

• Given a constant α > 1, σ is said to be α-compressed if p(σ) ≤ α · pmin.

“2-compressed”
p(σ) = 23
pmin = 12

“1-compressed”
p(σ) = 12
pmin = 12
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• Goal 1: Given a particle system P and a constant α > 1, reach and remain in a set of 
configurations which are α-compressed.

α
O(sqrt(|P|)) 2 1
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Perimeter is a global property, but our particles are limited to local communication.

• Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.

• First attempt: particles move to positions where they have more neighbors.

e(σ) = 171
p(σ) = 126

e(σ) = 246
p(σ) = 51
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Perimeter is a global property, but our particles are limited to local communication.

• Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.

• First attempt: particles move to positions where they have more neighbors.

• …However, need something more robust to local minima.
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The general framework:

1. Choose a particle from the system uniformly at random.

2. Choose a direction from {0, … , 5} and a number p from (0,1) uniformly at random.

3. If certain properties hold and p < [probability function], then move in that direction.

4. Otherwise, do nothing.
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The general framework:

1. Choose a particle from the system uniformly at random.

2. Choose a direction from {0, … , 5} and a number p from (0,1) uniformly at random.

3. If certain properties hold and p < [probability function], then move in that direction.

4. Otherwise, do nothing.

These are customizable for different applications!
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Input: an initial configuration σ0 (connected, hole-free), and a bias parameter λ > 1.

1. Choose a particle from the system uniformly at random.

2. Choose a direction from {0, … , 5} and a number p from (0,1) uniformly at random.

3. If properties for maintaining connectivity and avoiding holes hold and p < λΔe, then move in 
that direction.

4. Otherwise, do nothing.
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Recall: movement decisions are made with probability λΔe, where λ > 1.

e = 2
e’ = 3
Pr[move] = λ3-2 > 1

e = 4
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100 particles initially in a line after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 
million iterations.
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We can use tools from Markov chain analysis to investigate our algorithm’s long-run behavior, or 
stationary distribution π.

• Theorem: For any λ > 2 + sqrt(2) with π(σ) ~ λe(σ), there is an α > 1 such that, at stationarity, 
with all but exponentially small probability the particle system is α-compressed.
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exponentially small probability the particle system is α-compressed.
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• Theorem: For any α > 1, there is a λ such that for π(σ) ~ λe(σ), at stationarity, with all but 
exponentially small probability the particle system is α-compressed.

And surprisingly…

• Theorem: For any λ < 2.17 with π(σ) ~ λe(σ) and any α > 1, at stationarity, the probability that 
the particle system is α-compressed is exponentially small.
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The last theorem shows that we can start with a compressed system and push λ below 2.17 to 
get the opposite behavior: expansion.

What else can we do?
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The ants in genus Eticon balance shortening their foraging paths with avoiding committing too 
many ants to the bridge, resulting in a smaller foraging force.

RLPKCG 2015: “Army ants dynamically adjust living bridges…”

http://www.pnas.org/content/112/49/15113.abstract
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Similar setting to compression, but adding:

• Land & gap positions.

• Fixed objects (to anchor the particle system to land).
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Goal 2: Balance two competing objectives:

• Minimizing overall perimeter (controlled by λ, as in compression)

• Minimizing total gap perimeter (controlled by γ)



A Markov Chain for Shortcut Bridging
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Input: an initial configuration σ0 (connected, hole-free), and a bias parameters λ, γ > 1.

1. Choose a particle from the system uniformly at random.

2. Choose a direction from {0, … , 5} and a number p from (0,1) uniformly at random.

3. If properties for maintaining connectivity and avoiding holes hold and p < λΔp γΔg, then move 
in that direction.

4. Otherwise, do nothing.
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A particle system initially fully on a V-shaped land mass after (a) 2 million, (b) 4 million, (c) 6 
million, and (d) 8 million iterations. 



Simulation: Shortcut Bridging, λ = 4, γ = 2
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A particle system initially fully on an N-shaped land mass after 10 million and 20 million 
iterations. 
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Summary of Theoretical Results
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We use a metric called weighted perimeter, denoted p’(σ), to capture the costs of both total and 
gap perimeter.

• Theorem: For any α > 1, there are λ > 2 + sqrt(2) and γ > 1 such that for π(σ) ~ λp(σ) γ g(σ), at 
stationarity, with all but exponentially small probability p’(σ) ≤ α · p’min.

Theorems on angle dependence:
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• Compression: appeared at PODC ‘16.

• Shortcut Bridging: accepted to DNA23.

• More extensions of compression, e.g., foraging.
• Explore systems with heterogenous bias parameters.
• Investigate behaviors when particles can change their bias parameters over time.
• Mix this stochastic approach with non-stochastic elements.

• “Active matter”: alignment, locomotion, and other emergent behaviors.
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Thank you!
sops.engineering.asu.edu

https://sops.engineering.asu.edu/
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