Self-Organizing Particle Systems: an Algorithmic Approach to Programmable Matter

JOSHUA J. DAYMUDE – ARIZONA STATE UNIVERSITY

WSSR 2018 - NOVEMBER 4, 2018

Stochastic Algs.

Inspirations & Applications

SOPS: Algorithms for Programmable Matter

WSSR 2018 – November <u>4</u>, 2018

Current Programmable Matter

PB 2016: "Design of Quasi-Spherical Modules for Building Programmable Matter"

RGR 2013: "M-blocks: Momentum driven, magnetic modular robots"

RCN 2014: "Programmable self-assembly in a thousand-robot swarm"

SOPS: Algorithms for Programmable Matter

Stochastic Algs.

Current Programmable Matter

Programmable matter systems can be **passive** or **active**:

- **Passive**: Little/no control over decisions & movements, depends on the environment.
- Active: Can control actions & movements to solve problems.

"Self-Organizing Particle Systems" (SOPS):

- Abstraction of **active** programmable matter.
- Each "particle" is a simple unit that can move and compute.
- Using **distributed algorithms**, limited particles coordinate to achieve sophisticated behavior.

RCN 2014: "Programmable self-assembly in a thousand-robot swarm"

PB 2016: "Design of Quasi-Spherical Modules for Building Programmable Matter"

The Big Picture

What <u>complex</u>, <u>collective</u> behaviors are achievable by systems of <u>simple</u>, <u>restricted</u> programmable particles?

SOPS: Algorithms for Programmable Matter

Conclusion

The (Geometric) Amoebot Model

• Space is modeled as the triangular lattice.

SOPS: Algorithms for Programmable Matter

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted)...

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).

Conclusion

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.

Stochastic Algs.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.

Stochastic Algs.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.
- Particles do not have a global compass, but locally label their neighbors in clockwise order.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.
- Particles do not have a global compass, but locally label their neighbors in clockwise order.
- Particles can communicate only with their neighbors.

• A particle only has constant-size memory.

SOPS: Algorithms for Programmable Matter

- A particle only has constant-size memory.
- No unique identifiers.

SOPS: Algorithms for Programmable Matter

- A particle only has constant-size memory.
- No unique identifiers.
- No global information.

- A particle only has constant-size memory.
- No unique identifiers.
- No global information.
- Asynchronous model of time: one atomic action may include finite computation and communication and at most one movement.

Deterministic Algs.

Stochastic Algs.

s. Swarm Robotics

Conclusion

Stateful, (Mostly) Deterministic Algorithms

UNIVERSITY of HOUSTON

Irina Kostitsyna

Andréa W. Richa Zahra Derakhshandeh Christian Scheideler Kristian Hinnenthal Thim Strothmann

Robert Gmyr

SOPS: Algorithms for Programmable Matter

Stateful, (Mostly) Deterministic Algorithms

At a glance:

- Particles running these algorithms utilize their constant-size memories to store state (variables, tokens, etc.)
- Particles running these algorithms coordinate through communication.
- In these algorithms, particle actions/movements are based on a combination of their own state and the states of their neighbors.
- These algorithms come with provable correctness and runtime guarantees.
- These algorithms, to date, are not even resilient to a single particle crash failure (with one important exception: <u>DFPSV 2018</u>: "Line Recovery by Programmable Particles").

Algorithm 1: Basic Shape Formation

- **Problem:** Transform any <u>connected</u> initial configuration of <u>contracted</u> particles into a line, regular hexagon, or regular triangle.
- **Assumptions:** Given a unique leader (seed) particle.
- **Main Idea:** Grow the final structure particle-by-particle, starting at the seed.
- **Correctness:** Guaranteed.
- Runtime: Requires O(n) asynchronous rounds in the worst case, and matches the lower bound for the worst case amount of work: Ω(n²).

Algorithm 1: Basic Shape Formation

SOPS: Algorithms for Programmable Matter

Algorithm 1: Basic Shape Formation

Algorithm 2: General Shape Formation

- **Problem:** Transform initial <u>triangle</u> of contracted particles into a target <u>sequentially constructible</u> shape S.
- **Assumptions:** Given a unique leader (seed) particle. Particles know constant-size representation of S.
- Main Idea: Organize the system into triangles of particles, and move these triangles to their place in the final shape.
- Correctness: Guaranteed.
- **Runtime:** Forms any "sequentially constructible" shape in **O**(n^{1/2}) asynchronous rounds, which matches the lower bound for any local-control algorithm.

Algorithm 3: Leader Election

- **Problem:** Given an connected system of contracted particles, a particle must eventually <u>uniquely</u> and <u>irreversibly</u> declare itself the <u>leader</u>.
- Main Idea: Candidates compete using distributed "identifiers". The candidate on the unique outer boundary with the highest identifier wins.
- **Correctness:** With high probability.
- **Runtime:** Elects a leader in **O**(length of the outer boundary), with high probability.

SOPS: Algorithms for Programmable Matter

Algorithm 4: Object Coating

- **Problem:** Use a particle system to evenly coat a static object as evenly as possible.
- **Assumptions:** The object does not contain narrow tunnels.
- Main Idea: Particles coat the first layer by following the object and attempt to elect a leader. If elected, this leader marks the start/end of the higher layers.
- **Correctness:** With high probability (leader election).
- **Runtime:** Requires **O**(n) asynchronous rounds (w.h.p.) in the worst case, which matches the lower bound for any local-control algorithm.

SOPS: Algorithms for Programmable Matter

Algorithm 4: Object Coating

Stochastic Algs.

Fully Stochastic Algorithms

Andréa W. Richa

Dana Randall

Cem Gökmen

Sarah Cannon

Marta Andrés Arroyo

Fully Stochastic Algorithms

At a glance:

- These algorithms are Markov chain processes that are directly translated into distributed algorithms.
- In these algorithms, particle actions/movements are all chosen at random with probabilities biasing them towards the objective.
- Particles running these algorithms use almost no memory (one or two bits per particle).
- Particles running these algorithms hardly ever communicate.
- These algorithms are guaranteed to converge to the desired behavior, but runtime bounds have only been obtained in simulation.

Markov Chains

• A <u>Markov chain</u> is a **memoryless**, **random** process that undergoes transitions between states in a state space.

SOPS: Algorithms for Programmable Matter

Markov Chains

- A <u>Markov chain</u> is a **memoryless**, **random** process that undergoes transitions between states in a state space.
- Our state space is all possible particle system **configurations**, and transitions between them are individual **particle moves**.

Algorithm 5: Compression (Expansion)

- **Problem:** Gather a particle system as tightly together as possible. (Or do the opposite.)
- Main Idea: Particles make moves that are biased towards increasing (or decreasing) their number of neighbors to achieve the global outcome.
- **Correctness:** With all but exponentially small probability.
- **Runtime:** Unknown. Simulations suggest **O**(n³) asynchronous rounds.

Algorithm 5: Compression (Expansion)

Algorithm 5: Compression (Expansion)

SOPS: Algorithms for Programmable Matter

Algorithm 6: Shortcut Bridging

- **Problem:** Maintain bridges that simultaneously balance the tradeoff between the benefit of a shorter path and the cost of more particles in the bridge.
- Main Idea: Extends compression by considering gap vs. land locations.
- **Correctness:** With all but exponentially small probability.

RLPKCG 2015: "Army ants dynamically adjust living bridges..."

SOPS: Algorithms for Programmable Matter

Algorithm 7: Separation (by "color")

- **Problem:** Enable a heterogeneous particle system to dynamically separate or integrate.
- Main Idea: Extends compression by considering neighbors of different colors.
- **Correctness:** With all but exponentially small probability.

Georgia Tech

Deterministic Algs.

Stochastic Algs.

Swarm Robotics

Conclusion

Applications to Swarm Robotics

Dana Randall

Cem Gökmen

Dan Goldman

Shengkai Li

Bahni Dutta

Sarah Cannon

Roderich Gross

Andréa W. Richa

Stochastic Algs.

Algorithm 8: Phototaxing

SOPS: Algorithms for Programmable Matter

Stochastic Algs.

Algorithm 8: Phototaxing

SOPS: Algorithms for Programmable Matter

Deterministic Algs.

Stochastic Algs.

Algorithm 8: Phototaxing

SOPS: Algorithms for Programmable Matter

Conclusion (The Big Picture)

What <u>complex</u>, <u>collective</u> behaviors are achievable by systems of <u>simple</u>, <u>restricted</u> programmable particles?

SOPS: Algorithms for Programmable Matter

Stochastic Algs.

Conclusion (The Big Picture)

Many complex, collective behaviors can be achieved by simple, restricted programmable particles.

SOPS: Algorithms for Programmable Matter

Ongoing Work

Extending to 3D:

- How should the amoebot model be extended to handle three dimensions?
- Modeling work is nearly done; simulator in progress.

Fault Tolerance:

- How should the amoebot model consider crash and Byzantine failures?
- Can the current algorithms be made fault-tolerant?

Energy Management:

• How could the amoebot model consider energy being supplied to and used by the particles?

Thank you!

sops.engineering.asu.edu

joshdaymude.wordpress.com

SOPS: Algorithms for Programmable Matter