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RGR 2013: "M-blocks: Momentum driven, magnetic modular robots" RCN 2014:  “Programmable self-assembly in a thousand-robot swarm”

PB 2016: “Design of Quasi-Spherical Modules for Building Programmable Matter”

https://ieeexplore.ieee.org/document/6696971
http://science.sciencemag.org/content/345/6198/795
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RCN 2014:  “Programmable self-assembly in a thousand-robot swarm”

PB 2016: “Design of Quasi-Spherical Modules for Building 
Programmable Matter”

Programmable matter systems can be passive or active:

• Passive: Little/no control over decisions & movements, 
depends on the environment.

• Active: Can control actions & movements to solve problems.

“Self-Organizing Particle Systems” (SOPS):

• Abstraction of active programmable matter.

• Each “particle” is a simple unit that can move and compute.

• Using distributed algorithms, limited particles coordinate to 
achieve sophisticated behavior.

http://science.sciencemag.org/content/345/6198/795
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What complex, collective behaviors are achievable by systems of 
simple, restricted programmable particles?

SOPS + The Amoebot Model

Stateful, (Mostly) 
Deterministic Algorithms

Fully Stochastic 
Algorithms

Applications to Swarm 
Robotics
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triangular lattice.
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• Space is modeled as the 
triangular lattice.

• Particles can occupy one 
node (contracted) or two 
adjacent nodes (expanded).

• Particles move by 
expanding and contracting.

• Particles do not have a 
global compass, but locally 
label their neighbors in 
clockwise order.

• Particles can communicate 
only with their neighbors.
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• A particle only has 
constant-size memory.

I have 4 
neighbors!

I’ve sent 4n 
messages!
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• A particle only has 
constant-size memory.

• No unique identifiers. I have 4 distinct 
neighbors!

My neighbor 
is P8!
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• A particle only has 
constant-size memory.

• No unique identifiers.

• No global information.

I am on some 
boundary.

The system 
has no holes.
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• A particle only has 
constant-size memory.

• No unique identifiers.

• No global information.

• Asynchronous model of 
time: one atomic action 
may include finite 
computation and 
communication and at 
most one movement.

Read more at: sops.engineering.asu.edu/sops/amoebot
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Markov Chains
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• A Markov chain is a memoryless, random process that undergoes transitions between 
states in a state space.

• Our state space is all possible particle system configurations, and transitions between 
these configurations are individual particle moves.
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Informally: Gather a particle system P as tightly together as possible.

Formally:

• The perimeter of a connected, hole-free configuration σ, denoted p(σ), is the length of σ‘s 
outer boundary. Let pmin(n) denote the minimum possible perimeter for n particles.

• Given a constant α > 1, σ is said to be α-compressed if p(σ) ≤ α · pmin(n).
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“2-compressed”
p(σ) = 23
pmin(19) = 12

“1-compressed”
p(σ) = 12
pmin(19) = 12



The Compression Problem
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Given a particle system P of n particles in an arbitrary, connected configuration and a constant 
α > 1, reach and remain in a set of α-compressed configurations.
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α
O(sqrt(n)) 2 1
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Perimeter is a global property, but our particles are limited to local communication.

• Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.

• First attempt: particles move to positions where they have more neighbors.
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e(σ) = 171
p(σ) = 126

e(σ) = 246
p(σ) = 51



Why Stochastic?
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Perimeter is a global property, but our particles are limited to local communication.

• Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.

• First attempt: particles move to positions where they have more neighbors.

• …However, we need something more robust to local minima.

Introduction       Background & Model       Problem Statement Algorithm & Results       Analysis       Extensions



Markov Chains for Particle Systems

Stochastic Algorithms for Programmable Matter Discrete Math Seminar – April 3, 2019

Introduction       Background & Model       Problem Statement       Algorithm & Results Analysis       Extensions

Turn a Markov chain (global, step-by-step) into a local, distributed, asynchronous algorithm:

• Carefully define the Markov chain to only use local moves.

Markov chain algorithm:

Starting from any configuration, repeat:

1. Choose a particle at random.

2. Expand into a (random) unoccupied 
adjacent position.

3. Perform some arbitrary, bounded 
computation involving its neighborhood.

4. Contract to either the new position or the 
original position.

Distributed algorithm:

Each particle concurrently executes:

2. Expand into a (random) unoccupied 
adjacent position.

3. Perform some arbitrary, bounded 
computation involving its neighborhood.

4. Contract to either the new position or the 
original position.



Distributed algorithm:

Each particle concurrently executes:

2. Expand into a (random) unoccupied 
adjacent position.

3. If certain properties hold, contract to new 
position with probability Pr[move].

4. Else, contract back to the original position.

Markov chain algorithm:

Starting from any configuration, repeat:

1. Choose a particle at random.

2. Expand into a (random) unoccupied 
adjacent position.

3. If certain properties hold, contract to new 
position with probability Pr[move].

4. Else, contract back to the original position.

Markov Chains for Particle Systems
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Turn a Markov chain (global, step-by-step) into a local, distributed, asynchronous algorithm:

• Carefully define the Markov chain to only use local moves.
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Input: an initial (connected) configuration σ0 and a bias parameter λ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λΔe}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) ~ λe(σ).

Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.

Metropolis filter 
(calculated w/ local info)

Proof: Detailed Balance

Proof: Peierls argument
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Lemma: For a connected, hole-free configuration σ of n particles, e(σ) = 3n – p(σ) – 3.

So, we can treat the global change in perimeter (λ-Δp) as a local change in #edges (λΔe)!
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Lemma: For a connected, hole-free configuration σ of n particles, e(σ) = 3n – p(σ) – 3.

So, we can treat the global change in perimeter (λ-Δp) as a local change in #edges (λΔe)!

e = 2
e’ = 3
Pr[move] = λ3-2 > 1

e = 4



Compression: Example Runs

Stochastic Algorithms for Programmable Matter Discrete Math Seminar – April 3, 2019

Introduction       Background & Model       Problem Statement       Algorithm & Results Analysis       Extensions

Lemma: For a connected, hole-free configuration σ of n particles, e(σ) = 3n – p(σ) – 3.
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Pr[move] = λ3-4 = 1/λ
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Lemma: For a connected, hole-free configuration σ of n particles, e(σ) = 3n – p(σ) – 3.

So, we can treat the global change in perimeter (λ-Δp) as a local change in #edges (λΔe)!

e = 2
e’ = 3
Pr[move] = λ3-2 > 1

e = 4
e’ = 3
Pr[move] = λ3-4 = 1/λ
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100 particles initially in a line after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and 
(e) 5 million iterations.
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Input: an initial (connected) configuration σ0 and a bias parameter λ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λΔe}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) ~ λe(σ).

Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.
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Qualitatively, what do we not want to happen to our particle system?

• The particle system could become disconnected.

• A (new) hole could be formed in the particle system.

• A move could be made that couldn’t be “undone” (bad for reversibility).
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Allowed: “Slides” (with 1-2 pivots) and “jumps” (0 pivots) avoid bad outcomes.

1 pivot 2 pivots no pivot
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Not allowed: Moves that lead to disconnection, create new holes, or cannot be reversed.

1. The current location should not have 5 neighbors (moving forms a hole).

2. If there are 1-2 pivots, all neighbors should be locally connected to a pivot.

3. If there are 0 pivots, both locations should have locally connected neighborhoods.



The Stationary Distribution
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Input: an initial (connected) configuration σ0 and a bias parameter λ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λΔe}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) ~ λe(σ).

Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.
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With the local rules for movement, our algorithm has the following properties:

• The particle system remains connected and no new holes form.

• Lemma: All existing holes are eventually eliminated.

• Once all holes are eliminated, all moves are reversible.

Irreducible + Aperiodic -> Ergodic -> Unique Stationary Distribution

Theorem: Our Markov chain for compression is ergodic on the state space of all connected, 
hole-free configurations.

Thus, our Markov chain for compression has a unique stationary distribution π.



The Stationary Distribution
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Theorem: We reach a stationary distribution π over configurations σ where π(σ) = λe(σ) / Z.

“The Metropolis filter min{1, λΔe} actually gets us the stationary distribution we wanted.”

Proof.

• π is the stationary distribution if π(σ) · P(σ,τ) = π(τ) · P(τ,σ), the detailed balance condition.

• Suppose, w.l.o.g., that λe(τ) - e(σ) ≤ 1. Then:

π(σ) · P(σ,τ) = (λe(σ) / Z) · (1/n) · (1/6) · min{ 1, λe(τ) - e(σ) }

= (λe(σ) + e(τ) - e(σ) / Z) · (1/n) · (1/6)

= (λe(τ) / Z) · (1/n) · (1/6) · 1

= π(τ) · P(τ,σ)
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Input: an initial (connected) configuration σ0 and a bias parameter λ > 1.

Repeat:

1. Choose a particle from the system uniformly at random.

2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.

3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen 
position with probability min{1, λΔe}.

Theorem: We reach a stationary distribution π over configurations σ where π(σ) ~ λ-p(σ) ~ λe(σ).

Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.



Correctness: A Peierls Argument

Stochastic Algorithms for Programmable Matter Discrete Math Seminar – April 3, 2019

Introduction       Background & Model       Problem Statement       Algorithm & Results       Analysis Extensions

Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.

“In the stationary distribution π(σ) ~ λ-p(σ), the α-compressed configurations are most likely.”

Proof sketch.

• Let Sα be the set of configurations σ with p(σ) > α · pmin(n) (the bad ones).

• We show, at stationarity, it is exponentially unlikely to be in such a “bad” configuration:

π(Sα) ≤ dsqrt(n), where d < 1.

• Let Ak be the set of “bad” configurations with p(σ) = k.

• The weight of a configuration σ in Ak is λ-k.

• But how many configurations are in Ak?
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Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.

Proof sketch (cont.)

• How many configurations are in Ak?

• Lemma: There are at most f(k)(2 + sqrt(2))k configurations in Ak, where f is subexponential.

• So we can calculate π(Ak) as follows:

π(Ak)  =  λ-k · |Ak| / Z  ≤  λ-k · f(k)(2 + sqrt(2))k / Z
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Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.

Proof sketch (cont.)

• We have π(Ak) ≤ λ-k · f(k)(2 + sqrt(2))k / Z.

• We can easily lower bound Z = ∑σ λ-p(σ) ≥ λ-pmin(n)
.

• Finally, sum π(Ak) over all perimeters k from α · pmin(n) to pmax(n) = 2n - 2.

• Carrying out a lot of algebra, we get:

π(Sα) = ∑k = α·pmin : 2n-2 π(Ak) ≤ ∑k λ-k · f(k)(2 + sqrt(2))k / λ-pmin(n) ≤ … ≤  dsqrt(n), where d < 1.
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Theorem: For any α > 1, there is a λ (depending on α) so that in the stationary distribution 
π(σ) ~ λ-p(σ) we have p(σ) ≤ α · pmin(n) with high probability.

Corollary: For any λ > 2 + sqrt(2) with π(σ) ~ λ-p(σ), there is an α > 1 such that, at stationarity, 
with all but exponentially small probability the particle system is α-compressed.

But surprisingly…

Theorem: For any λ < 2.17 with π(σ) ~ λ-p(σ) and any α > 1, at stationarity, the probability that 
the particle system is α-compressed is exponentially small.



“Expanding” Beyond Compression
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The last theorem shows that setting λ < 2.17 yields the opposite behavior: expansion. 

What else can we do?
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Problem Statement: Maintain bridge structures that simultaneously balance the tradeoff 
between the benefit of a shorter path and the cost of more particles in the bridge.

RLPKCG 2015: “Army ants dynamically adjust living bridges…”

http://www.pnas.org/content/112/49/15113.abstract


Shortcut Bridging
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We achieve this goal by extending the compression algorithm to minimize both the total 
perimeter p(σ) and the gap perimeter g(σ).

Formally, we minimize weighted perimeter p’(σ,c) = p(σ) + c · g(σ), where c > 0.

Min p(σ)

Max g(σ)

Max p(σ)

Min g(σ)



Shortcut Bridging: λ = 4, γ = 2

Stochastic Algorithms for Programmable Matter Discrete Math Seminar – April 3, 2019

Introduction       Background & Model       Problem Statement       Algorithm & Results       Analysis       Extensions

A particle system initially fully on a V-shaped land mass after (a) 2 million, (b) 4 million, (c) 6 
million, and (d) 8 million iterations.



Shortcut Bridging: λ = 4, γ = 2
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A particle system initially fully on an N-shaped land mass after 10 million and 20 million 
iterations.



Dependence on Gap Angle
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The real army ants’ bridges form different shapes depending on 
the gap angle, according to the tradeoff between shorter paths
and using too many bridge ants.

Our algorithm provably exhibits similar behavior: the bridge forms 
furthest from land on small-angled land mass and hardly even 
leaves land on the large-angled land mass.

RLPKCG 2015: “Army ants dynamically…”

http://www.pnas.org/content/112/49/15113.abstract


Separation
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Problem Statement: Enable a heterogeneous particle system to dynamically separate into 
large monochromatic clusters or integrate, becoming well-mixed.

Ex
p
an

si
o
n

C
o
m

p
re

ss
io

n

SeparationIntegration



Advantages of the Stochastic Approach
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• The algorithms are completely decentralized (no leader is necessary for coordination).

• The algorithms self-stabilize in the presence of particle failures.

• The algorithms are nearly oblivious: each particle only keeps 1 bit of memory.



Takeaways of the Stochastic Approach
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Good candidate problems for the stochastic approach to programmable matter should:

• Express desired behavior as optimizing a global energy function. For example, in shortcut 
bridging:

minimize total perimeter and minimize gap perimeter -> π(σ) ~ λ-p(σ) γ-g(σ).

• Be able to compute changes in the global energy function using only local information. For 
example, in compression:

π(σ) ~ λ-p(σ) -> move with probability min{1, λΔe}.
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Andréa W. Richa Dana Randall Cem Gökmen Sarah Cannon Marta Andrés Arroyo
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Thank you!
sops.engineering.asu.edu

joshdaymude.wordpress.com
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