Stochastic Algorithms for Programmable Matter

JOSHUA J. DAYMUDE, ANDREA W. RICHA – ARIZONA STATE UNIVERSITY

SARAH CANNON - UNIVERSITY OF CALIFORNIA, BERKELEY

DANA RANDALL – GEORGIA INSTITUTE OF TECHNOLOGY

DISCRETE MATH SEMINAR - APRIL 3, 2019

ment Algorit

Algorithm & Results Analysis

Extensions

Inspirations & Applications

Stochastic Algorithms for Programmable Matter

nt Algorithm & Results

& Results Analysis

Extensions

Current Programmable Matter

PB 2016: "Design of Quasi-Spherical Modules for Building Programmable Matter"

RGR 2013: "M-blocks: Momentum driven, magnetic modular robots"

RCN 2014: "Programmable self-assembly in a thousand-robot swarm"

Stochastic Algorithms for Programmable Matter

Current Programmable Matter

Programmable matter systems can be **passive** or **active**:

- **Passive**: Little/no control over decisions & movements, depends on the environment.
- Active: Can control actions & movements to solve problems.

"Self-Organizing Particle Systems" (SOPS):

- Abstraction of **active** programmable matter.
- Each "particle" is a simple unit that can move and compute.
- Using **distributed algorithms**, limited particles coordinate to achieve sophisticated behavior.

Analysis

RCN 2014: "Programmable self-assembly in a thousand-robot swarm"

PB 2016: "Design of Quasi-Spherical Modules for Building Programmable Matter"

Stochastic Algorithms for Programmable Matter

The Big Picture

What <u>complex</u>, <u>collective</u> behaviors are achievable by systems of <u>simple</u>, <u>restricted</u> programmable particles?

Stochastic Algorithms for Programmable Matter

• Space is modeled as the triangular lattice.

Stochastic Algorithms for Programmable Matter

Analysis

- Space is modeled as the • triangular lattice.
- Particles can occupy one ٠ node (contracted)...

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.
- Particles do not have a global compass, but locally label their neighbors in clockwise order.

- Space is modeled as the triangular lattice.
- Particles can occupy one node (contracted) or two adjacent nodes (expanded).
- Particles move by expanding and contracting.
- Particles do not have a global compass, but locally label their neighbors in clockwise order.
- Particles can communicate only with their neighbors.

Stochastic Algorithms for Programmable Matter

Discrete Math Seminar – April 3, 2019

Extensions

• A particle only has constant-size memory.

Stochastic Algorithms for Programmable Matter

- A particle only has constant-size memory.
- No unique identifiers.

Stochastic Algorithms for Programmable Matter

- A particle only has constant-size memory.
- No unique identifiers.
- No global information.

Stochastic Algorithms for Programmable Matter

- A particle only has constant-size memory.
- No unique identifiers.
- No global information.
- Asynchronous model of time: one atomic action may include finite computation and communication and at most one movement.

Stochastic Algorithms for Programmable Matter

Markov Chains

• A <u>Markov chain</u> is a **memoryless**, **random** process that undergoes transitions between states in a state space.

Stochastic Algorithms for Programmable Matter

Markov Chains

- A <u>Markov chain</u> is a **memoryless**, **random** process that undergoes transitions between states in a state space.
- Our state space is all possible particle system **configurations**, and transitions between these configurations are individual **particle moves**.

Stochastic Algorithms for Programmable Matter

The Compression Problem

Informally: Gather a particle system P as tightly together as possible.

Formally:

- The **perimeter** of a connected, hole-free configuration σ , denoted $p(\sigma)$, is the length of σ 's outer boundary. Let $p_{min}(n)$ denote the minimum possible perimeter for n particles.
- Given a constant $\alpha > 1$, σ is said to be **\alpha-compressed** if $p(\sigma) \le \alpha \cdot p_{\min}(n)$.

Stochastic Algorithms for Programmable Matter

The Compression Problem

Given a particle system P of n particles in an arbitrary, connected configuration and a constant $\alpha > 1$, reach and remain in a set of α -compressed configurations.

Stochastic Algorithms for Programmable Matter

Why Stochastic?

Perimeter is a **global** property, but our particles are limited to **local** communication.

- Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.
- First attempt: particles move to positions where they have more neighbors.

Stochastic Algorithms for Programmable Matter

Why Stochastic?

Perimeter is a **global** property, but our particles are limited to **local** communication.

- Lemma: Maximizing the number of internal edges is equivalent to minimizing perimeter.
- First attempt: particles move to positions where they have more neighbors.
- ...However, we need something more robust to local minima.

Markov Chains for Particle Systems

Turn a Markov chain (global, step-by-step) into a **local**, distributed, asynchronous algorithm:

• Carefully define the Markov chain to only use **local** moves.

Markov chain algorithm:

Starting from any configuration, repeat:

- 1. Choose a particle at random.
- 2. Expand into a (random) unoccupied adjacent position.
- 3. Perform some arbitrary, bounded computation involving its neighborhood.
- 4. Contract to either the new position or the 4. original position.

Distributed algorithm:

Each particle concurrently executes:

- 2. Expand into a (random) unoccupied adjacent position.
- 3. Perform some arbitrary, bounded computation involving its neighborhood.
 - Contract to either the new position or the original position.

Stochastic Algorithms for Programmable Matter

Markov Chains for Particle Systems

Turn a Markov chain (global, step-by-step) into a **local**, distributed, asynchronous algorithm:

• Carefully define the Markov chain to only use **local** moves.

Markov chain algorithm:

Starting from any configuration, repeat:

- 1. Choose a particle at random.
- 2. Expand into a (random) unoccupied adjacent position.
- 3. If certain properties hold, contract to new 3. position with probability Pr[move].
- 4. Else, contract back to the original position. 4.

Distributed algorithm:

Each particle concurrently executes:

- 2. Expand into a (random) unoccupied adjacent position.
 - If certain properties hold, contract to new position with probability Pr[move].
 - Else, contract back to the original position.

The Compression Algorithm

<u>Input</u>: an initial (connected) configuration σ_0 and a bias parameter $\lambda > 1$. Repeat:

- 1. Choose a particle from the system uniformly at random.
- 2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.
- 3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen position with probability min{1, $\lambda^{\Delta e}$ }.

Metropolis filter (calculated w/ local info)

Theorem: We reach a stationary distribution π over configurations σ where $\pi(\sigma) \sim \lambda^{-p(\sigma)} \sim \lambda^{e(\sigma)}$.

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

Proof: Peierls argument

Stochastic Algorithms for Programmable Matter

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})$!

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})$!

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})$!

Stochastic Algorithms for Programmable Matter

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})$!

Stochastic Algorithms for Programmable Matter

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})!$

Stochastic Algorithms for Programmable Matter

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})!$

Stochastic Algorithms for Programmable Matter

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})!$

Stochastic Algorithms for Programmable Matter

Lemma: For a connected, hole-free configuration σ of n particles, $e(\sigma) = 3n - p(\sigma) - 3$.

So, we can treat the global change in perimeter $(\lambda^{-\Delta p})$ as a local change in #edges $(\lambda^{\Delta e})!$

Stochastic Algorithms for Programmable Matter

Discrete Math Seminar – April 3, 2019

Compression: $\lambda = 4$

100 particles initially in a **line** after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million iterations.

Stochastic Algorithms for Programmable Matter

<u>Input</u>: an initial (connected) configuration σ_0 and a bias parameter $\lambda > 1$. Repeat:

- 1. Choose a particle from the system uniformly at random.
- 2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.
- 3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen position with probability min{1, $\lambda^{\Delta e}$ }.

Theorem: We reach a stationary distribution π over configurations σ where $\pi(\sigma) \sim \lambda^{-p(\sigma)} \sim \lambda^{e(\sigma)}$.

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

Qualitatively, what do we **not** want to happen to our particle system?

- The particle system could become **disconnected**.
- A (new) **hole** could be formed in the particle system.
- A move could be made that **couldn't be "undone"** (bad for reversibility).

Allowed: "Slides" (with 1-2 pivots) and "jumps" (0 pivots) avoid bad outcomes.

Stochastic Algorithms for Programmable Matter

Not allowed: Moves that lead to disconnection, create new holes, or cannot be reversed.

- 1. The current location should not have 5 neighbors (moving forms a hole).
- 2. If there are 1-2 pivots, all neighbors should be locally connected to a pivot.
- 3. If there are 0 pivots, both locations should have locally connected neighborhoods.

The Stationary Distribution

<u>Input</u>: an initial (connected) configuration σ_0 and a bias parameter $\lambda > 1$. Repeat:

- 1. Choose a particle from the system uniformly at random.
- 2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.
- 3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen position with probability min{1, $\lambda^{\Delta e}$ }.

Theorem: We reach a stationary distribution π over configurations σ where $\pi(\sigma) \sim \lambda^{-p(\sigma)} \sim \lambda^{e(\sigma)}$.

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

Stochastic Algorithms for Programmable Matter

The Stationary Distribution

With the local rules for movement, our algorithm has the following properties:

- The particle system remains connected and no new holes form.
- **Lemma:** All existing holes are eventually eliminated.
- Once all holes are eliminated, all moves are reversible.

Irreducible + Aperiodic -> Ergodic -> Unique Stationary Distribution

Theorem: Our Markov chain for compression is ergodic on the state space of all connected, hole-free configurations.

Thus, our Markov chain for compression has a unique stationary distribution π .

The Stationary Distribution

Theorem: We reach a stationary distribution π over configurations σ where $\pi(\sigma) = \lambda^{e(\sigma)} / Z$. "The Metropolis filter min{1, $\lambda^{\Delta e}$ } actually gets us the stationary distribution we wanted." <u>Proof.</u>

- π is the stationary distribution if $\pi(\sigma) \cdot P(\sigma, \tau) = \pi(\tau) \cdot P(\tau, \sigma)$, the **detailed balance condition**.
- Suppose, w.l.o.g., that $\lambda^{e(\tau) e(\sigma)} \leq 1$. Then:

$$\pi(\sigma) \cdot P(\sigma, \tau) = (\lambda^{e(\sigma)} / Z) \cdot (1/n) \cdot (1/6) \cdot \min\{1, \lambda^{e(\tau) - e(\sigma)}\}$$
$$= (\lambda^{e(\sigma) + e(\tau) - e(\sigma)} / Z) \cdot (1/n) \cdot (1/6)$$
$$= (\lambda^{e(\tau)} / Z) \cdot (1/n) \cdot (1/6) \cdot 1$$
$$= \pi(\tau) \cdot P(\tau, \sigma)$$

<u>Input</u>: an initial (connected) configuration σ_0 and a bias parameter $\lambda > 1$. Repeat:

- 1. Choose a particle from the system uniformly at random.
- 2. Choose an adjacent position uniformly at random. If occupied, go back to Step 1.
- 3. If properties hold for maintaining connectivity and avoiding holes, move to the chosen position with probability min{1, $\lambda^{\Delta e}$ }.

Theorem: We reach a stationary distribution π over configurations σ where $\pi(\sigma) \sim \lambda^{-p(\sigma)} \sim \lambda^{e(\sigma)}$.

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{min}(n)$ with high probability.

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

"In the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$, the α -compressed configurations are most likely."

Proof sketch.

- Let S_{α} be the set of configurations σ with $p(\sigma) > \alpha \cdot p_{min}(n)$ (the bad ones).
- We show, at stationarity, it is exponentially unlikely to be in such a "bad" configuration: $\pi(S_{\alpha}) \leq d^{\text{sqrt}(n)}$, where d < 1.

• Let A_k be the set of "bad" configurations with $p(\sigma) = k$.

- The weight of a configuration σ in A_k is λ^{-k} .
- But how many configurations are in A_k?

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

Proof sketch (cont.)

- How many configurations are in A_k ?
- Lemma: There are at most $f(k)(2 + sqrt(2))^k$ configurations in $A_{k'}$ where f is subexponential.
- So we can calculate $\pi(A_k)$ as follows:

 $\pi(A_k) = \mathbf{\lambda}^{-k} \cdot |A_k| / Z \leq \mathbf{\lambda}^{-k} \cdot f(k)(2 + \operatorname{sqrt}(2))^k / Z$

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

Proof sketch (cont.)

- We have $\pi(A_k) \leq \lambda^{-k} \cdot f(k)(2 + \operatorname{sqrt}(2))^k / Z$.
- We can easily lower bound $Z = \sum_{\sigma} \lambda^{-p(\sigma)} \ge \lambda^{-pmin(n)}$
- Finally, sum $\pi(A_k)$ over all perimeters k from $\alpha \cdot p_{min}(n)$ to $p_{max}(n) = 2n 2$.
- Carrying out a lot of algebra, we get:

 $\pi(S_{\alpha}) = \sum_{k = \alpha \cdot pmin : 2n-2} \pi(A_k) \leq \sum_k \lambda^{-k} \cdot f(k)(2 + sqrt(2))^k / \lambda^{-pmin(n)} \leq \dots \leq d^{sqrt(n)}, \text{ where } d < 1.$

Theorem: For any $\alpha > 1$, there is a λ (depending on α) so that in the stationary distribution $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ we have $p(\sigma) \leq \alpha \cdot p_{\min}(n)$ with high probability.

Corollary: For any $\lambda > 2 + \text{sqrt}(2)$ with $\pi(\sigma) \sim \lambda^{-p(\sigma)}$, there is an $\alpha > 1$ such that, at stationarity, with all but exponentially small probability the particle system is α -compressed.

But surprisingly...

Theorem: For any $\lambda < 2.17$ with $\pi(\sigma) \sim \lambda^{-p(\sigma)}$ and any $\alpha > 1$, at stationarity, the probability that the particle system is α -compressed is exponentially small.

"Expanding" Beyond Compression

The last theorem shows that setting $\lambda < 2.17$ yields the opposite behavior: **expansion**.

What else can we do?

Stochastic Algorithms for Programmable Matter

Shortcut Bridging

Problem Statement: Maintain bridge structures that simultaneously balance the tradeoff between the benefit of a shorter path and the cost of more particles in the bridge.

RLPKCG 2015: "Army ants dynamically adjust living bridges..."

Stochastic Algorithms for Programmable Matter

Shortcut Bridging

We achieve this goal by extending the compression algorithm to minimize both the total perimeter $p(\sigma)$ and the gap perimeter $g(\sigma)$.

Formally, we minimize weighted perimeter $p'(\sigma,c) = p(\sigma) + c \cdot g(\sigma)$, where c > 0.

Stochastic Algorithms for Programmable Matter

Shortcut Bridging: $\lambda = 4, \gamma = 2$

A particle system initially fully on a V-shaped land mass after (a) 2 million, (b) 4 million, (c) 6 million, and (d) 8 million iterations.

Stochastic Algorithms for Programmable Matter

Shortcut Bridging: $\lambda = 4, \gamma = 2$

A particle system initially fully on an N-shaped land mass after 10 million and 20 million iterations.

Stochastic Algorithms for Programmable Matter

Dependence on Gap Angle

The real army ants' bridges form different shapes depending on the **gap angle**, according to the tradeoff between **shorter paths** and using **too many bridge ants**.

Our algorithm provably exhibits similar behavior: the bridge forms furthest from land on small-angled land mass and hardly even leaves land on the large-angled land mass.

RLPKCG 2015: "Army ants dynamically..."

Stochastic Algorithms for Programmable Matter

Separation

Problem Statement: Enable a heterogeneous particle system to dynamically separate into large monochromatic clusters or integrate, becoming well-mixed.

Stochastic Algorithms for Programmable Matter

Advantages of the Stochastic Approach

- The algorithms are completely **decentralized** (no leader is necessary for coordination).
- The algorithms **self-stabilize** in the presence of particle **failures**.
- The algorithms are **nearly oblivious**: each particle only keeps 1 bit of memory.

Takeaways of the Stochastic Approach

Good candidate problems for the stochastic approach to programmable matter should:

• Express desired behavior as optimizing a global energy function. For example, in shortcut bridging:

minimize total perimeter and minimize gap perimeter -> $\pi(\sigma) \sim \lambda^{-p(\sigma)} \gamma^{-g(\sigma)}$.

• Be able to compute changes in the global energy function using only local information. For example, in compression:

 $\pi(\sigma) \sim \lambda^{-p(\sigma)} \rightarrow \text{move with probability min}\{1, \lambda^{\Delta e}\}.$

Our Team

Andréa W. Richa

Cem Gökmen

Dana Randall

Sarah Cannon

Marta Andrés Arroyo

Stochastic Algorithms for Programmable Matter

Thank you!

sops.engineering.asu.edu

joshdaymude.wordpress.com

Stochastic Algorithms for Programmable Matter