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Programmable Active Matter

“Catoms” “Kilobots”

“M-Blocks” “Particle Robots” 

Programmable matter is a substance that can change its physical properties autonomously 
based on user input or environmental stimuli.

Composed of active particles that can control their decisions and movements.



Separation in Biology

“Integrated” “Separated”



Self-Organizing Particle Systems

Abstracts programmable matter as 
simple computational “particles” that 
use distributed, local algorithms to 
achieve system-level goals.

The Geometric Amoebot Model

• Particles occupy nodes of the 
triangular lattice and move along 
edges.

• Local communication, only with 
immediate neighbors.

• Constant-size memory per 
particle.

• No global information 
(coordinates, orientation, etc.)



Algorithms in the Amoebot Model

Each particle independently and concurrently runs its own instance of the given distributed 
algorithm to achieve system-level goals:

• Shape Formation [Derakhshandeh, Gmyr, Richa, Scheideler, Strothmann 2015-16]

• Object Coating [D., Derakhshandeh, Gmyr, Porter, Richa, Scheideler, Strothmann 2017-18]

• Leader Election [D., Gmyr, Richa, Scheideler, Strothmann 2017]

• Compression & Expansion [Cannon, D., Randall, Richa 2016]

• Separation & Integration [Cannon, D., Gökmen, Randall, Richa 2019]



Our Goal

Compression: Gather the particle system together.

Compression + Separation: Gather together overall and by color.

• For our analysis, we consider the 2-color case.



Compression

Question: Using local, distributed rules, how can particles “compress,” gathering together?

Definition: A configuration is α-compressed if its perimeter is at most α times the minimum 
perimeter (for this number of particles).

Not compressed Compressed



Compression: Algorithm

[Cannon, D., Randall, Richa 2016]

This distributed, stochastic algorithm for compression:

• Ensures system connectivity on the triangular lattice.

• Uses Poisson clocks to activate particles (no synchronization).

• Uses Metropolis probabilities to converge to 𝜋𝜋 𝜎𝜎 ∝ 𝜆𝜆𝑒𝑒(𝜎𝜎), for bias parameter 𝜆𝜆 > 1.

Fix 𝜆𝜆 > 1. Start in any connected configuration.

When a particle activates (according to its Poisson clock), do:

1. Pick a random neighboring node.

2. If the proposed node is unoccupied, move with probability min 𝜆𝜆Δ𝑒𝑒, 1 .

3. Otherwise, do nothing.



Compression: Simulations, 𝜆𝜆 = 4

100 particles after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million iterations.

[Cannon, D., Randall, Richa 2016]



Compression: Simulations, 𝜆𝜆 = 2

100 particles after (a) 10 million and (b) 20 million iterations.

[Cannon, D., Randall, Richa 2016]



Compression: Results

[Cannon, D., Randall, Richa 2016]

Definition: A configuration is α-compressed if its perimeter is at most α times the minimum 
perimeter (for this number of particles).

Theorem: When 𝝀𝝀 > 𝟐𝟐 + 𝟐𝟐, there exists an 𝜶𝜶 = 𝜶𝜶(𝝀𝝀) such that the particle system is
α-compressed at stationarity almost surely.

• E.g., when 𝜆𝜆 = 4, we have 𝛼𝛼 = 9.

Theorem: When 𝝀𝝀 < 𝟐𝟐.𝟏𝟏𝟏𝟏, for any 𝜶𝜶 > 𝟏𝟏, the probability the particle system is α-compressed at 
stationarity is exponentially small.

No compression (expansion) Compression𝟐𝟐 + 𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏 𝝀𝝀



Separation

Question: Using local, distributed rules, how can heterogeneous particles “compress” overall 
while also separating into mostly monochromatic groups?

Neither compressed nor separated Compressed and separated



Separation: Algorithm

This distributed, stochastic algorithm for separation:

• Like compression, ensures system connectivity and is not synchronized.

• Uses Metropolis probabilities to converge to 𝜋𝜋 𝜎𝜎 ∝ 𝜆𝜆𝑒𝑒(𝜎𝜎) ⋅ 𝛾𝛾𝑚𝑚 𝜎𝜎 , for bias parameters 𝜆𝜆, 𝛾𝛾.

Fix 𝜆𝜆 and 𝛾𝛾. Start in any connected configuration.

When a particle activates (according to its Poisson clock), do:

1. Pick a random neighboring node.

2. Move with probability min 𝜆𝜆Δ𝑒𝑒 ⋅ 𝛾𝛾Δ𝑚𝑚, 1 .

3. Otherwise, do nothing.



Separation: Simulations

Integration: 𝛾𝛾 = 0.25 Separation: 𝛾𝛾 = 4
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Results: Separation for large 𝛾𝛾

Stationary distribution 𝜋𝜋 𝜎𝜎 ∝ 𝜆𝜆𝑒𝑒 𝜎𝜎 ⋅ 𝛾𝛾𝑚𝑚 𝜎𝜎 = 𝜆𝜆𝛾𝛾 −𝑝𝑝(𝜎𝜎) ⋅ 𝛾𝛾−ℎ(𝜎𝜎).

Theorem: When 𝝀𝝀𝝀𝝀 > 𝟔𝟔.𝟖𝟖𝟖𝟖 and 𝝀𝝀 > 𝟓𝟓.𝟔𝟔𝟔𝟔, there exists an 𝜶𝜶 = 𝜶𝜶(𝝀𝝀,𝝀𝝀) such that the particle 
system is α-compressed at stationarity almost surely.

Proof techniques. Uses the cluster expansion and a Peierls argument.

Theorem: Moreover, separation occurs among the α-compressed configurations at stationarity 
almost surely.

Proof techniques. Uses bridging [Miracle, Pascoe, Randall 2011] and a Peierls argument.



Results: Separation for large 𝛾𝛾

Theorem: When 𝝀𝝀𝝀𝝀 > 𝟔𝟔.𝟖𝟖𝟖𝟖 and 𝝀𝝀 > 𝟓𝟓.𝟔𝟔𝟔𝟔, there exists an 𝜶𝜶 = 𝜶𝜶(𝝀𝝀,𝝀𝝀) such that the particle 
system is α-compressed at stationarity almost surely.

Proof sketch.

Stationary distribution 𝜋𝜋 𝜎𝜎 = 𝜆𝜆𝛾𝛾 −𝑝𝑝(𝜎𝜎) ⋅ 𝛾𝛾−ℎ 𝜎𝜎 /𝑍𝑍.

Let 𝑆𝑆𝛼𝛼 be the non-α-compressed configurations. Want to show 𝜋𝜋 𝑆𝑆𝛼𝛼 is exponentially small.

Partition 𝑆𝑆𝛼𝛼 into sets of configurations 𝐴𝐴𝑘𝑘 with the same perimeter 𝑘𝑘. Then:

𝜋𝜋 𝐴𝐴𝑘𝑘 = �
𝜎𝜎∈𝐴𝐴𝑘𝑘

𝜆𝜆𝛾𝛾 −𝑝𝑝(𝜎𝜎) ⋅ 𝛾𝛾−ℎ 𝜎𝜎 /𝑍𝑍

= 𝜆𝜆𝛾𝛾 −𝑘𝑘 ⋅ �
𝜎𝜎∈𝐴𝐴𝑘𝑘

𝛾𝛾−ℎ(𝜎𝜎)/𝑍𝑍



Results: Separation for large 𝛾𝛾

Theorem: When 𝝀𝝀𝝀𝝀 > 𝟔𝟔.𝟖𝟖𝟖𝟖 and 𝝀𝝀 > 𝟓𝟓.𝟔𝟔𝟔𝟔, there exists an 𝜶𝜶 = 𝜶𝜶(𝝀𝝀,𝝀𝝀) such that the particle 
system is α-compressed at stationarity almost surely.

Proof sketch (cont.)

So 𝜋𝜋 𝐴𝐴𝑘𝑘 = 𝜆𝜆𝛾𝛾 −𝑘𝑘 ⋅ ∑𝜎𝜎∈𝐴𝐴𝑘𝑘 𝛾𝛾
−ℎ(𝜎𝜎)/𝑍𝑍.

If we had ∑𝜎𝜎∈𝐴𝐴𝑘𝑘 𝛾𝛾
−ℎ(𝜎𝜎) ≤ 𝑏𝑏𝑘𝑘 for some 𝑏𝑏 > 1, then:

𝜋𝜋 𝑆𝑆𝛼𝛼 = �
𝑘𝑘=𝛼𝛼⋅𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝜋𝜋 𝐴𝐴𝑘𝑘 = �
𝑘𝑘=𝛼𝛼⋅𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆𝛾𝛾 −𝑘𝑘 ⋅ �
𝜎𝜎∈𝐴𝐴𝑘𝑘

𝛾𝛾−ℎ(𝜎𝜎)/𝑍𝑍 ≤ �
𝑘𝑘=𝛼𝛼⋅𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆𝛾𝛾 −𝑘𝑘 ⋅ 𝑏𝑏𝑘𝑘/𝑍𝑍

Lemma [Volume-Surface Decomposition]: When 𝛾𝛾 > 5.66, there are 𝑎𝑎 and 𝑏𝑏 such that:

𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏−𝑘𝑘 ≤ �
𝜎𝜎∈𝐴𝐴𝑘𝑘

𝛾𝛾−ℎ(𝜎𝜎) ≤ 𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏𝑘𝑘

However, while true in the uncolored 
case (compression), this is not true 
for our heterogeneous setting.



Results: Separation for large 𝛾𝛾

Lemma [Volume-Surface Decomposition]: If ΩΛ are all 2-colorings with monochrome 
perimeter of an uncolored configuration Λ and 𝛾𝛾 > 5.66, then there are 𝑎𝑎 and 𝑏𝑏 such that:

𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏−𝑘𝑘 ≤�
𝜎𝜎∈ΩΛ

𝛾𝛾−ℎ 𝜎𝜎 ≤ 𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏𝑘𝑘

Proof sketch (cont.)

Express ∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 as a “polymer model.”

• An interface 𝐼𝐼 between two color classes is a loop.

• Let ΓΛ be the set of all interfaces in Λ. Then:

∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = ∑pairwise disjoint Γ′∈ΓΛ ∏𝐼𝐼∈Γ′ 𝛾𝛾−|𝐼𝐼|



Results: Separation for large 𝛾𝛾

Lemma [Volume-Surface Decomposition]: If ΩΛ are all 2-colorings with monochrome 
perimeter of an uncolored configuration Λ and 𝛾𝛾 > 5.66, then there are 𝑎𝑎 and 𝑏𝑏 such that:

𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏−𝑘𝑘 ≤�
𝜎𝜎∈ΩΛ

𝛾𝛾−ℎ 𝜎𝜎 ≤ 𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏𝑘𝑘

Proof sketch (cont.)

∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = ∑pairwise disjoint Γ′∈ΓΛ ∏𝐼𝐼∈Γ′ 𝛾𝛾−|𝐼𝐼|

A cluster is a multiset 𝑋𝑋 ⊆ ΓΛ of connected interfaces.

The cluster expansion for our quantity is:

ln ∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = ∑𝑋𝑋⊆ΓΛ 𝜙𝜙(𝑋𝑋)∏𝐼𝐼∈𝑋𝑋 𝛾𝛾−|𝐼𝐼|

Need to know this
formal series converges.

Also need to
bound this sum.



Results: Separation for large 𝛾𝛾

Lemma [Volume-Surface Decomposition]: If ΩΛ are all 2-colorings with monochrome 
perimeter of an uncolored configuration Λ and 𝛾𝛾 > 5.66, then there are 𝑎𝑎 and 𝑏𝑏 such that:

𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏−𝑘𝑘 ≤�
𝜎𝜎∈ΩΛ

𝛾𝛾−ℎ 𝜎𝜎 ≤ 𝑎𝑎𝑛𝑛 ⋅ 𝑏𝑏𝑘𝑘

Proof sketch (cont.)

∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = ∑pairwise disjoint Γ′∈ΓΛ ∏𝐼𝐼∈Γ′ 𝛾𝛾−|𝐼𝐼|

A cluster is a multiset 𝑋𝑋 ⊆ ΓΛ of connected interfaces.

The cluster expansion for our quantity is:

ln ∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = ∑𝑋𝑋⊆ΓΛ 𝜙𝜙(𝑋𝑋)∏𝐼𝐼∈𝑋𝑋 𝛾𝛾−|𝐼𝐼|

Using the Kotecký-Preiss condition with 𝛾𝛾 > 5.66 and a
constant 𝑐𝑐 = 0.0001, we show series convergence and:

𝑎𝑎𝑛𝑛 ⋅ 𝑒𝑒−𝑐𝑐𝑘𝑘 ≤ ∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 ≤ 𝑎𝑎𝑛𝑛 ⋅ 𝑒𝑒𝑐𝑐𝑘𝑘



Results: Integration for 𝛾𝛾 close to 1

Stationary distribution 𝜋𝜋 𝜎𝜎 ∝ 𝜆𝜆𝑒𝑒 𝜎𝜎 ⋅ 𝛾𝛾𝑚𝑚 𝜎𝜎 = 𝜆𝜆𝛾𝛾 −𝑝𝑝(𝜎𝜎) ⋅ 𝛾𝛾−ℎ(𝜎𝜎).

Theorem: When 𝝀𝝀(𝝀𝝀 + 𝟏𝟏) > 𝟔𝟔.𝟖𝟖𝟖𝟖 and 𝟎𝟎.𝟗𝟗𝟖𝟖 ≤ 𝝀𝝀 ≤ 𝟏𝟏.𝟎𝟎𝟐𝟐, there exists an 𝜶𝜶 = 𝜶𝜶(𝝀𝝀,𝝀𝝀) such that 
the particle system is α-compressed at stationarity almost surely.

Theorem: Moreover, separation occurs among the α-compressed configurations at stationarity 
with exponentially small probability.



Results: Integration for 𝛾𝛾 close to 1

Theorem: When 𝝀𝝀(𝝀𝝀 + 𝟏𝟏) > 𝟔𝟔.𝟖𝟖𝟖𝟖 and 𝟎𝟎.𝟗𝟗𝟖𝟖 ≤ 𝝀𝝀 ≤ 𝟏𝟏.𝟎𝟎𝟐𝟐, there exists an 𝜶𝜶 = 𝜶𝜶(𝝀𝝀,𝝀𝝀) such that 
the particle system is α-compressed at stationarity almost surely.

Proof sketch.

Recall: ∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = ∑pairwise disjoint Γ′∈ΓΛ ∏𝐼𝐼∈Γ′ 𝛾𝛾−|𝐼𝐼|

The 𝛾𝛾−|𝐼𝐼| term does not decay fast enough when 𝛾𝛾
is close to 1.

Rewrite using the high temperature expansion.

∑𝜎𝜎∈ΩΛ 𝛾𝛾
−ℎ 𝜎𝜎 = (… )∑even 𝐸𝐸⊆𝐸𝐸(Λ)

𝛾𝛾−1
𝛾𝛾+1

|𝐸𝐸|

Then apply the cluster expansion and Peierls argument
similar to the previous proof.



Open Questions

1. What is the mixing time of our algorithms?

• Connections to the low temperature plus-boundary Ising model on Z2 suggests proofs are hard.

• However, we observe compression in simulation after only 𝑂𝑂 𝑛𝑛3.3 iterations.

2. Are there critical values 𝝀𝝀∗ and 𝝀𝝀∗ marking phase transitions?

3. What other new ways can we use the cluster expansion?

• Used to show aggregation/dispersion in the disconnected case. [Dutta, Li, Cannon, D., Aydin, 
Richa, Goldman, Randall]

No compression (expansion) Compression𝟐𝟐 + 𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏 𝝀𝝀∗

Integration: 𝝀𝝀 near 𝟏𝟏 Separation: large 𝝀𝝀𝝀𝝀∗



Thank you!
sops.engineering.asu.edu

joshdaymude.wordpress.com

https://sops.engineering.asu.edu/
https://joshdaymude.wordpress.com/
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