A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems

Joshua J. Daymude and Andréa W. Richa (Arizona State University) Sarah Cannon (Claremont McKenna College) Cem Gökmen and Dana Randall (Georgia Tech)

RANDOM 2019, MIT — September 21, 2019

Programmable Active Matter

Programmable matter is a substance that can change its physical properties autonomously based on user input or environmental stimuli.

Composed of active particles that can control their decisions and movements.

"M-Blocks"

"Kilobots"

"Particle Robots"

Separation in Biology

"Integrated"

"Separated"

Self-Organizing Particle Systems

Abstracts programmable matter as simple computational "particles" that use **distributed**, **local algorithms** to achieve **system-level goals**.

The Geometric Amoebot Model

- Particles occupy nodes of the triangular lattice and move along edges.
- Local communication, only with immediate neighbors.
- Constant-size memory per particle.
- No global information (coordinates, orientation, etc.)

Algorithms in the Amoebot Model

Each particle independently and concurrently runs its own instance of the given distributed algorithm to achieve system-level goals:

- Shape Formation [Derakhshandeh, Gmyr, Richa, Scheideler, Strothmann 2015-16]
- **Object Coating** [D., Derakhshandeh, Gmyr, Porter, Richa, Scheideler, Strothmann 2017-18]
- Leader Election [D., Gmyr, Richa, Scheideler, Strothmann 2017]
- Compression & Expansion [Cannon, D., Randall, Richa 2016]
- Separation & Integration [Cannon, D., Gökmen, Randall, Richa 2019]

Our Goal

Compression: Gather the particle system together.

Compression + Separation: Gather together overall <u>and by color</u>.

• For our analysis, we consider the 2-color case.

Question: Using local, distributed rules, how can particles "compress," gathering together?

Definition: A configuration is α -compressed if its perimeter is at most α times the minimum perimeter (for this number of particles).

Compression: Algorithm

[Cannon, D., Randall, Richa 2016]

This distributed, stochastic algorithm for compression:

- Ensures system connectivity on the triangular lattice.
- Uses Poisson clocks to activate particles (no synchronization).
- Uses Metropolis probabilities to converge to $\pi(\sigma) \propto \lambda^{e(\sigma)}$, for bias parameter $\lambda > 1$.

Fix $\lambda > 1$. Start in any connected configuration.

When a particle activates (according to its Poisson clock), do:

- 1. Pick a random neighboring node.
- 2. If the proposed node is unoccupied, move with probability $\min\{\lambda^{\Delta e}, 1\}$.
- 3. Otherwise, do nothing.

Compression: Simulations, $\lambda = 4$

[Cannon, D., Randall, Richa 2016]

100 particles after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million iterations.

Compression: Simulations, $\lambda = 2$

[Cannon, D., Randall, Richa 2016]

100 particles after (a) 10 million and (b) 20 million iterations.

Compression: Results

[Cannon, D., Randall, Richa 2016]

Definition: A configuration is α -compressed if its perimeter is at most α times the minimum perimeter (for this number of particles).

Theorem: When $\lambda > 2 + \sqrt{2}$, there exists an $\alpha = \alpha(\lambda)$ such that the particle system is α -compressed at stationarity almost surely.

• E.g., when $\lambda = 4$, we have $\alpha = 9$.

Theorem: When $\lambda < 2.17$, for any $\alpha > 1$, the probability the particle system is α -compressed at stationarity is exponentially small.

Separation

Question: Using local, distributed rules, how can heterogeneous particles "compress" overall while also separating into mostly monochromatic groups?

Separation: Algorithm

This distributed, stochastic algorithm for separation:

- Like compression, ensures system connectivity and is not synchronized.
- Uses Metropolis probabilities to converge to $\pi(\sigma) \propto \lambda^{e(\sigma)} \cdot \gamma^{m(\sigma)}$, for bias parameters λ, γ .

Fix λ and γ . Start in any connected configuration.

When a particle activates (according to its Poisson clock), do:

- 1. Pick a random neighboring node.
- 2. Move with probability $\min\{\lambda^{\Delta e} \cdot \gamma^{\Delta m}, 1\}$.
- 3. Otherwise, do nothing.

Separation: Simulations

Stationary distribution $\pi(\sigma) \propto \lambda^{e(\sigma)} \cdot \gamma^{m(\sigma)} = (\lambda \gamma)^{-p(\sigma)} \cdot \gamma^{-h(\sigma)}$.

Theorem: When $\lambda \gamma > 6.83$ and $\gamma > 5.66$, there exists an $\alpha = \alpha(\lambda, \gamma)$ such that the particle system is α -compressed at stationarity almost surely.

<u>Proof techniques</u>. Uses the cluster expansion and a Peierls argument.

Theorem: Moreover, separation occurs among the α -compressed configurations at stationarity almost surely.

Proof techniques. Uses bridging [Miracle, Pascoe, Randall 2011] and a Peierls argument.

Theorem: When $\lambda \gamma > 6.83$ and $\gamma > 5.66$, there exists an $\alpha = \alpha(\lambda, \gamma)$ such that the particle system is α -compressed at stationarity almost surely.

Proof sketch.

Stationary distribution $\pi(\sigma) = (\lambda \gamma)^{-p(\sigma)} \cdot \gamma^{-h(\sigma)}/Z$.

Let S_{α} be the non- α -compressed configurations. Want to show $\pi(S_{\alpha})$ is exponentially small. Partition S_{α} into sets of configurations A_k with the same perimeter k. Then:

$$\pi(A_k) = \sum_{\sigma \in A_k} (\lambda \gamma)^{-p(\sigma)} \cdot \gamma^{-h(\sigma)} / Z$$
$$= (\lambda \gamma)^{-k} \cdot \sum_{\sigma \in A_k} \gamma^{-h(\sigma)} / Z$$

Theorem: When $\lambda \gamma > 6.83$ and $\gamma > 5.66$, there exists an $\alpha = \alpha(\lambda, \gamma)$ such that the particle system is α -compressed at stationarity almost surely.

Lemma [Volume-Surface Decomposition]: When $\gamma > 5.66$, there are *a* and *b* such that:

$$a^n \cdot b^{-k} \leq \sum_{\sigma \in A_k} \gamma^{-h(\sigma)} \leq a^n \cdot b^k$$

Lemma [Volume-Surface Decomposition]: If Ω_{Λ} are all 2-colorings with monochrome perimeter of an uncolored configuration Λ and $\gamma > 5.66$, then there are *a* and *b* such that:

$$a^n \cdot b^{-k} \leq \sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} \leq a^n \cdot b^k$$

Proof sketch (cont.)

Express $\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)}$ as a "polymer model."

- An interface *I* between two color classes is a loop.
- Let Γ_{Λ} be the set of all interfaces in Λ . Then:

 $\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} = \sum_{\text{pairwise disjoint } \Gamma' \in \Gamma_{\Lambda}} \prod_{I \in \Gamma'} \gamma^{-|I|}$

Lemma [Volume-Surface Decomposition]: If Ω_{Λ} are all 2-colorings with monochrome perimeter of an uncolored configuration Λ and $\gamma > 5.66$, then there are *a* and *b* such that:

$$a^n \cdot b^{-k} \leq \sum_{\sigma \in \Omega_\Lambda} \gamma^{-h(\sigma)} \leq a^n \cdot b^k$$

Proof sketch (cont.)

 $\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} = \sum_{\text{pairwise disjoint } \Gamma' \in \Gamma_{\Lambda}} \prod_{I \in \Gamma'} \gamma^{-|I|}$

A cluster is a multiset $X \subseteq \Gamma_{\Lambda}$ of connected interfaces.

The cluster expansion for our quantity is:

$$\ln\left(\sum_{\sigma\in\Omega_{\Lambda}}\gamma^{-h(\sigma)}\right) = \sum_{X\subseteq\Gamma_{\Lambda}}\phi(X)\prod_{I\in X}\gamma^{-|I|}$$

Need to know this Also need to formal series converges.

Lemma [Volume-Surface Decomposition]: If Ω_{Λ} are all 2-colorings with monochrome perimeter of an uncolored configuration Λ and $\gamma > 5.66$, then there are *a* and *b* such that:

$$a^n \cdot b^{-k} \leq \sum_{\sigma \in \Omega_\Lambda} \gamma^{-h(\sigma)} \leq a^n \cdot b^k$$

Proof sketch (cont.)

 $\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} = \sum_{\text{pairwise disjoint } \Gamma' \in \Gamma_{\Lambda}} \prod_{I \in \Gamma'} \gamma^{-|I|}$

A cluster is a multiset $X \subseteq \Gamma_{\Lambda}$ of connected interfaces.

The cluster expansion for our quantity is:

$$\ln\left(\sum_{\sigma\in\Omega_{\Lambda}}\gamma^{-h(\sigma)}\right) = \sum_{X\subseteq\Gamma_{\Lambda}}\phi(X)\prod_{I\in X}\gamma^{-|I|}$$

Using the Kotecký-Preiss condition with $\gamma > 5.66$ and a constant c = 0.0001, we show series convergence and:

$$a^n \cdot e^{-ck} \leq \sum_{\sigma \in \Omega_\Lambda} \gamma^{-h(\sigma)} \leq a^n \cdot e^{ck}$$

Results: Integration for γ close to 1

Stationary distribution $\pi(\sigma) \propto \lambda^{e(\sigma)} \cdot \gamma^{m(\sigma)} = (\lambda \gamma)^{-p(\sigma)} \cdot \gamma^{-h(\sigma)}$.

Theorem: When $\lambda(\gamma + 1) > 6.83$ and $0.98 \le \gamma \le 1.02$, there exists an $\alpha = \alpha(\lambda, \gamma)$ such that the particle system is α -compressed at stationarity almost surely.

Theorem: Moreover, separation occurs among the α -compressed configurations at stationarity with exponentially small probability.

Results: Integration for γ close to 1

Theorem: When $\lambda(\gamma + 1) > 6.83$ and $0.98 \le \gamma \le 1.02$, there exists an $\alpha = \alpha(\lambda, \gamma)$ such that the particle system is α -compressed at stationarity almost surely.

Proof sketch.

Recall:
$$\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} = \sum_{\text{pairwise disjoint } \Gamma' \in \Gamma_{\Lambda}} \prod_{I \in \Gamma'} \gamma^{-|I|}$$

The $\gamma^{-|I|}$ term does not decay fast enough when γ is close to 1.

Rewrite using the high temperature expansion.

$$\sum_{\sigma \in \Omega_{\Lambda}} \gamma^{-h(\sigma)} = (\dots) \sum_{\text{even } E \subseteq E(\Lambda)} \left(\frac{\gamma - 1}{\gamma + 1}\right)^{|E|}$$

Then apply the cluster expansion and Peierls argument similar to the previous proof.

Open Questions

- 1. What is the mixing time of our algorithms?
 - Connections to the low temperature plus-boundary Ising model on Z² suggests proofs are hard.
 - However, we observe compression in simulation after only $O(n^{3.3})$ iterations.
- 2. Are there critical values λ^* and γ^* marking phase transitions?

- 3. What other new ways can we use the cluster expansion?
 - Used to show aggregation/dispersion in the disconnected case. [Dutta, Li, Cannon, D., Aydin, Richa, Goldman, Randall]

Thank you!

sops.engineering.asu.edu

joshdaymude.wordpress.com