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Programmable Active Matter

Programmable matter is a substance that can change its physical properties autonomously
based on user input or environmental stimull.

Composed of active particles that can control their decisions and movements.

“Kilobots”

“M-Blocks” “Particle Robots”




Separation in Biology




Self-Organizing Particle Systems

Abstracts programmable matter as
simple computational “particles” that
use distributed, local algorithms to
achieve system-level goals.

The Geometric Amoebot Model

* Particles occupy nodes of the
triangular lattice and move along
edges.

* Local communication, only with
immediate neighbors.

 Constant-size memory per
particle.

* No global information
(coordinates, orientation, etc.)



Algorithms in the Amoebot Model

Each particle independently and concurrently runs its own instance of the given distributed
algorithm to achieve system-level goals:

« Shape Formation [Derakhshandeh, Gmyr, Richa, Scheideler, Strothmann 2015-16]
« Object Coating [D., Derakhshandeh, Gmyr, Porter, Richa, Scheideler, Strothmann 2017-18]
« Leader Election [D., Gmyr, Richa, Scheideler, Strothmann 2017]

« Compression & Expansion [Cannon, D., Randall, Richa 2016]

- Separation & Integration [Cannon, D., Gkmen, Randall, Richa 2019]



Our Goal

Compression: Gather the particle system together.

Compression + Separation: Gather together overall and by color.

« For our analysis, we consider the 2-color case.



Compression

Question: Using local, distributed rules, how can particles “compress,” gathering together?

Not compressed Compressed

Definition: A configuration is a-compressed if its perimeter is at most o times the minimum
perimeter (for this number of particles).



Compression: Algorithm

[Cannon, D., Randall, Richa 2016]

This distributed, stochastic algorithm for compression:

« Ensures system connectivity on the triangular lattice.

« Uses Poisson clocks to activate particles (no synchronization).

 Uses Metropolis probabilities to converge to (o) oc 1°(9), for bias parameter 1 > 1.

Fix 4 > 1. Start in any connected configuration.
When a particle activates (according to its Poisson clock), do:
1. Pick a random neighboring node.

2. If the proposed node is unoccupied, move with probability min{12¢, 1}.

3. Otherwise, do nothing.
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Simulat

Compression

[Cannon, D., Randall, Richa 2016]

100 particles after (@) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million iterations.



Compression: Simulations, 1 = 2

[Cannon, D., Randall, Richa 2016]

100 particles after (@) 10 million and (b) 20 million iterations.



Compression: Results

[Cannon, D., Randall, Richa 2016]

Definition: A configuration is a-compressed if its perimeter is at most o times the minimum
perimeter (for this number of particles).

Theorem: When 4 > 2 + /2, there exists an @ = a(A) such that the particle system is
o-compressed at stationarity almost surely.

 E.g., when 1 =4, we have o = 9.

Theorem: When 4 < 2.17, for any a > 1, the probability the particle system is a-compressed at
stationarity is exponentially small.

No compression (expansion) 2.17 A 2 ++2 Compression
ﬁ M




Separation

Question: Using local, distributed rules, how can heterogeneous particles “compress” overall
while also separating into mostly monochromatic groups?

el e

Neither compressed nor separated Compressed and separated



Separation: Algorithm

This distributed, stochastic algorithm for separation:

« Like compression, ensures system connectivity and is not synchronized.

« Uses Metropolis probabilities to converge to (o) o« 1¢(9) - (@) for bias parameters 1, 7.

Fix 4 and y. Start in any connected configuration.

When a particle activates (according to its Poisson clock), do:
1. Pick a random neighboring node.

2. Move with probability min{A%¢ - 27 1},

3. Otherwise, do nothing.




Separation: Simulations

Integration: y = 0.25 Separation: y = 4

Compression: A = 4

/ ________ / / ________ /

Expansion: 1 =1
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Results: Separation for large y

Stationary distribution (g) oc 1¢(9) . ™) = (1) 7P(9) ., =(9),

4 )
Theorem: When 4y > 6.83 and y > 5. 66, there exists an « = a(4,y) such that the particle

system is a-compressed at stationarity almost surely.

froof techniques. Uses the cluster expansion and a Peierls argument, y

Theorem: Moreover, separation occurs among the a-compressed configurations at stationarity
almost surely.

Proof technigues. Uses bridging [Miracle, Pascoe, Randall 2011] and a Peierls argument.




Results: Separation for large y

Theorem: When Ay > 6.83 and y > 5.66, there exists an 4,7) such that the particle
system s at stationarity almost surely.

Proof sketch.

Stationary distribution (o) = (1y)~P@) .y~ /7,
Let S, be the non-a-compressed configurations. Want to show n(S,) is exponentially small.
Partition S, into sets of configurations A, with the same perimeter k. Then:

T(A) = ) )Py )z

OEA

=)k z y M)z

OEAL



Results: Separation for large y

Theorem: When 4y > 6.83 and y > 5. 66, there exists an « = a(4,y) such that the particle

system is a-compressed at stationarity almost surely.

Proof sketch (cont.)

However, while true in the uncolored
case (compression), this is not true
for our heterogeneous setting.

S0 T[(Ak) = (Ay)_k : Zo'eAky_rj(o-/)/Z/-///

If we had Y,e4, ¥ < b* for some b > 1, then:

Pmax Pmax

Pmax

") = ) mA)= Y G Yy Y p)kbkyz

k=a-Dmin k=a-Pmin 0EAK

kK=a-Dmin

Lemma [Volume-Surface Decomposition]: When y > 5.66, there are a and b such that:

a™ - b7k < 2 y M9 < g™ - b¥

O€EAL




Results: Separation for large y

Lemma [Volume-Surface Decomposition]: If Q, are all 2-colorings with monochrome
perimeter of an uncolored configuration A and y > 5.66, then there are a and b such that:

a™- b7k < 2 y~Mo) < qn . pE
gEQA

Proof sketch (cont.)

Express Y,eq, ¥~ as a “polymer model.”

« An interface I between two color classes is a loop.

« Let Iy, be the set of all interfaces in A. Then:

—h(o) — —|1]
ZO’EQA Y - z:pairwise disjoint T'ely HIEI" Y




Results: Separation for large y

Lemma [Volume-Surface Decomposition]: If Q, are all 2-colorings with monochrome
perimeter of an uncolored configuration A and y > 5.66, then there are a and b such that:

a™- b7k < 2 y~Mo) < qn . pE
gEQA

Proof sketch (cont.)

—h(o) — =1
ZO’EQA 4 - z:pairwise disjoint '’ €ly HIEF' Y

A cluster is a multiset X € T’y of connected interfaces.

O

The cluster expansion for our quantity is: 1, O geey, O
lll D‘;:

_ _ fo o

ln(ZJEQAV h(a)) = ZXEFA dX) [liexy 1 o ﬂc.:;%-{af?o

AN

Need to know this Also need to
formal series converges. bound this sum.



Results: Separation for large y

Lemma [Volume-Surface Decomposition]: If Q, are all 2-colorings with monochrome
perimeter of an uncolored configuration A and y > 5.66, then there are a and b such that:

a™- b7k < 2 y~Mo) < qn . pE
gEQA

Proof sketch (cont.)

—h(o) — =1
ZO’EQA 4 - z:pairwise disjoint '€y HIEF' Y

A cluster is a multiset X € T’y of connected interfaces.

O

The cluster expansion for our quantity is: 1, O geey, O
jll D‘;:

_ _ fo o

ln(ZJEQAV h(a)) = ZXEI‘A dX) [liexy 1 ﬂc.::%-g;o

Using the Kotecky-Preiss condition with y > 5.66 and a
constant ¢ = 0.0001, we show series convergence and:

—ck —-h k
a" - e”HK < Neq, ¥ M < a-ef



Results: Integration for y close to 1

Stationary distribution (g) oc 1¢(9) . ™) = (1) 7P(9) ., =(9),

Theorem: When A(y + 1) > 6.83 and 0.98 < y < 1.02, there exists an « = a(4,y) such that
the particle system is a-compressed at stationarity almost surely.

Theorem: Moreover, separation occurs among the o-compressed configurations at stationarity
with exponentially small probability.



Results: Integration for y close to 1

Theorem: When A(y +1) > 6.83 and 0.98 < y < 1.02, there exists an 4,¥7) such that
the particle system is at stationarity almost surely.

Proof sketch.

. —h(o) — —II
Recall: ZO‘EQA )14 — z:pairwise disjoint I'"€l'y HIEF' Y :

The y~ 1l term does not decay fast enough when y
Is close to 1.

Rewrite using the high temperature expansion.

|E|
— y—1
ZaeQAy (o) = ("')Zeven ECE(A) (y+1)

Then apply the cluster expansion and Peierls argument
similar to the previous proof.



Open Questions

1. What is the mixing time of our algorithms?
«  Connections to the low temperature plus-boundary Ising model on Z? suggests proofs are hard.

- However, we observe compression in simulation after only 0(n*?) iterations.

2. Are there critical values 2" and y* marking phase transitions?

No compression (expansion) 2.17 A 2442 Compression
Integration: y near 1 | 4 Separation: large y

3. What other new ways can we use the cluster expansion?

« Used to show aggregation/dispersion in the disconnected case. [Dutta, Li, Cannon, D., Aydin,
Richa, Goldman, Randall]



Thank you!

sops.engineering.asu.edu

Joshdaymude.wordpress.com



https://sops.engineering.asu.edu/
https://joshdaymude.wordpress.com/
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