
Collaborating in Motion

Distributed and Stochastic Algorithms for Emergent Behavior
in Programmable Matter

Joshua J. Daymude

Prof. Andréa W. Richa (Chair)

Prof. Christian Scheideler, Prof. Dana Randall, Prof. Theodore Pavlic, and Prof. Stephanie Gil

PhD Dissertation Defense — March 15, 2021

CIDSE, Arizona State University

Self-Organizing Systems

Cooperative decentralized systems are capable of surprising emergent behavior arising from
relatively simple interactions of their members.

HMSKCLCA 2011
Microsoft Research 2016

https://iopscience.iop.org/article/10.1088/1478-3975/8/2/026016
https://www.youtube.com/watch?v=3SYYW_7Ah7c

Programmable Matter

Programmable matter is a substance that can change its physical properties autonomously
based on user input or environmental stimuli.

“Catoms”
PB 2018

“Kilobots”
RCN 2014

“M-Blocks”
RGR 2013

“Particle Robots”
LBBCRHRL 2019

https://link.springer.com/article/10.1007/s10514-018-9710-0
http://science.sciencemag.org/content/345/6198/795
https://ieeexplore.ieee.org/document/6696971
https://www.nature.com/articles/s41586-019-1022-9

Programmable Matter

Centimeter/millimeter-scale robots are more limited than, say, Spot from Boston Dynamics.

Most programmable matter and modular robotic systems assume:

• Modest compute resources.

• Strictly local sensing and communication (e.g., 1-neighborhood).

• Limited (e.g., constant-size) or no persistent memory.

• Local, rudimentary movement.

Existing Research on Programmable Matter

Programmable matter systems can be organized by their degree of self-determination in
deciding and enacting local behaviors.

Passive Active

T
h
e
o
ry

P
ra

ct
ic

e

DNA Self-
Assembly

Molecular
Computation

Chemical
Reaction
Networks

Tile Self-
Assembly
Models

Wireless
Sensor

Networks

Population Protocols

Slime Molds

Self-Reconfigurable Modular Robots

Swarm Robots

Claytronics
(Catoms)

The Nubot
Model

The Amoebot
Model

Metamorphic
Robots

The Mobile
Robots Model

Kilobots

Origami
Robots

“SynCells”

BOBbots

M-Blocks

Supersmarticles

Xenobots

Dissertation: Outline

This dissertation focuses on the algorithmic foundations of active programmable matter.

Three main research questions:

1. What are the minimum individual capabilities necessary to achieve system behavior 𝑋?

2. How can existing algorithms be enhanced to capture more realistic assumptions?

3. How can digital algorithms be translated for simple, analog (passive) systems?

Dissertation: The Big Picture

1. The Amoebot Model and its Enhancements 2. Stateful Distributed Algorithms

4. Swarm Robotics and Granular Active Matter 3. Stochastic Distributed Algorithms

Part I

Stateful Distributed Algorithms for Programmable Matter

What are the minimum individual capabilities necessary to achieve system behavior 𝑋?

The Amoebot Model (2014–2021)

The amoebot model is an abstraction of programmable matter.

• Space: triangular lattice 𝐺Δ.

• Amoebots can be contracted (one node)
or expanded (two adjacent nodes).

• Amoebots are anonymous, have only
constant-size memories, communicate
with immediate neighbors, and have no
global compass.

• Self-actuated movements via expansions,
contractions, and handovers.

• Sequential, weakly fair adversary: one
amoebot acts per time, every amoebot acts
infinitely often.

Stateful Distributed Algorithms

With constant-size memory, communication between neighbors, and local movements,
amoebot systems can solve:

1. Leader Election. A unique amoebot must irreversibly declare itself the system’s leader.

2. Object Coating. The system must reconfigure into even layers coating a given object.

3. Convex Hull Formation. The system must reconfigure as the convex hull of a given object,
enclosing it with the minimum number of amoebots.

Problem: A unique amoebot must irreversibly declare itself the system’s leader.

Motivation: Leader election is well-studied in distributed computing. Can help coordinate the
system for more complex behaviors (e.g., shape formation, object coating, etc.).

Key Idea: Each amoebot gets a random value. The largest value on the outer boundary wins.

Theorem. The Improved-Leader-Election algorithm solves the leader election problem in 𝒪 𝐿
rounds w.h.p., where 𝐿 is the length of the outer boundary.

Leader Election

An event 𝐴 occurs with high probability (w.h.p.)
if Pr 𝐴 ≥ 1 − 1/𝑛𝑐 , where 𝑛 is the number of
amoebots in the system and 𝑐 > 0 is a constant.

Leader Election

*Implementation by Ryan Yiu.

Problem: A unique amoebot must irreversibly declare itself the system’s leader.

Theorem. The Improved-Leader-Election algorithm solves the leader election problem in 𝒪 𝐿
rounds w.h.p., where 𝐿 is the length of the outer boundary.

Our algorithm inspired significant follow-up work:

Interestingly, our Improved-Leader-Election algorithm remains state-of-the-art for settings with
holes where amoebots cannot move and exactly one leader should be elected.

Leader Election

Object Coating

Problem: The system must reconfigure into even layers coating a given object.

Motivation: Smart paint, distributed sensor networks, and shape formation via reverse-molds.

Key Idea: Coat the first layer by following the object’s surface. Elect a leader to mark the start
and end of higher layers. Then form higher layers. [DGRSS 2017].

Theorem. The Universal-Coating algorithm solves the object coating problem in 𝒪 𝑛 rounds
w.h.p., where 𝑛 is the number of amoebots in the system. This runtime is worst-case
asymptotically optimal — no local-control algorithm can do any better, in the worst case.

This “w.h.p.” is inherited from Improved-Leader-
Election. The rest of the Universal-Coating
algorithm is deterministic.

Object Coating

*Implementation by Alexandra Porter.

Convex Hull Formation

Problem: The system must reconfigure as the convex hull of a given object, enclosing it with
the minimum number of amoebots.

Motivation: Collective transport, isolating hazardous materials, macrophage-like engulfing.

In our discrete setting of the triangular lattice, we consider restricted-orientation convex hulls.

Ours is the first distributed algorithm to compute restricted-orientation convex hulls without
global orientation or coordinates and when limited to constant-size memory.

Convex Hull Formation

Problem: The system must reconfigure as the convex hull of a given object, enclosing it with
the minimum number of amoebots.

Key Idea: Use a leader to explore the object, keeping track of its distances to each of the six
half-planes forming the convex hull. Once determined, simply follow the convex hull.

But distances are too big for constant-size memory! So we use the rest of the amoebot system
as the leader’s distributed memory.

Convex Hull Formation

*Implementation by Kristian Hinnenthal.

Convex Hull Formation

*Implementation by Kristian Hinnenthal.

Part I

Stateful Distributed Algorithms for Programmable Matter

What are the minimum individual capabilities necessary to achieve system behavior 𝑋?

With constant-size memory, neighbor-to-neighbor communication, and local movements,
a system can collectively achieve leader election, object coating, and convex hull formation.

Part II

The Amoebot Model and its Enhancements

How can existing algorithms be enhanced to capture more realistic assumptions?

Enhancing the Amoebot Model

The amoebot model and its algorithms do not account for energy costs of the amoebots’
actions (energy-agnostic) and assume only one amoebot is active at a time (sequential).

Real programmable matter systems are energy-constrained and concurrent.

At a high level, what we’d like is the following:

This is too optimistic and may be impossible to guarantee in general, so instead we only
consider algorithms 𝒜 that obey certain conventions.

Realism
Compiler

Algorithm 𝒜
with Unrealistic
Assumptions

Algorithm 𝒜′
with Realistic
Assumptions

and Same
Outcomes as 𝒜

Conventions

Energy Distribution

Goal: Model energy harvesting, distribution, and usage. Ensure all amoebots eventually get the
energy they need to run some algorithm 𝒜.

Model Extensions

• Each amoebot 𝐴 has a constant-size battery 𝐴. 𝑒𝑏𝑎𝑡.

• Amoebots with access to an external energy source can directly harvest energy.

• Amoebots can transfer a fixed amount of energy per time to their neighbors without loss.

Energy Distribution

Goal: Model energy harvesting, distribution, and usage. Ensure all amoebots eventually get the
energy they need to run some algorithm 𝒜.

We developed the Energy-Sharing algorithm as an asymptotically optimal
mechanism for distributing energy to all amoebots in a system.

We then developed the Forest-Prune-Repair algorithm as a mechanism for
maintaining an underlying spanning forest structure as amoebots move.

Energy-Sharing
+

Forest-Prune-
Repair

Energy-Agnostic
Algorithm 𝒜

Energy-
Constrained
Algorithm 𝒜′

Connectivity

*Joint work with Jamison Weber.

Energy-Constrained Shape Formation

Energy-Sharing + Forest-Prune-Repair composed with Hexagon-Formation:

The Canonical Amoebot Model

Goal: Study amoebot algorithms where many amoebots are simultaneously active.

Generalizes the amoebot model by partitioning amoebot functionality into:

• A higher-level application layer where algorithms are defined in terms of operations.

• A lower-level system layer that executes an amoebot’s operations via message passing.

The Canonical Amoebot Model

Algorithms in the canonical amoebot model are specified in terms of actions:

𝑙𝑎𝑏𝑒𝑙 ∶ 𝑔𝑢𝑎𝑟𝑑 → ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠⟩

• 𝑙𝑎𝑏𝑒𝑙 specifies the action’s name.

• 𝑔𝑢𝑎𝑟𝑑 is a Boolean predicate determining whether this action is currently enabled.

• 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 specifies the computation and sequence of operations to perform if enacted.

Example from Hexagon-Formation:

The Canonical Amoebot Model

We use an adversary to model timing and progress. Two primary levels of concurrency:

Sequential. At most one active amoebot per time.

Asynchronous. Arbitrary sets of amoebots can be simultaneously active.

𝐴1
𝐴2

𝐴3

𝐴4

𝐴5

𝑡𝑖𝑚𝑒 →

𝐴1
𝐴2

𝐴3

𝐴4

𝐴5

𝑡𝑖𝑚𝑒 →

The Canonical Amoebot Model

An unfair adversary can activate any amoebot with an enabled action.

The rest of this talk will primarily focus on unfair asynchronous adversaries, the most general of
all adversarial activation models.

Informally: the adversary can activate any amoebot with something to do whenever it wants to.

𝐴1
𝐴2

𝐴3

𝐴4

𝐴5

𝑡𝑖𝑚𝑒 →

Asynchronous Hexagon Formation

Problem: Reconfigure any connected amoebot system as a regular hexagon, assuming there is
a unique seed amoebot initially in the system.

Asynchronous Hexagon Formation

We formulate a Hexagon-Formation algorithm in terms of actions based on [DGRSS 2015].

Asynchronous Hexagon Formation

Theorem. Hexagon-Formation (HF) is correct under an unfair asynchronous adversary.

Outline of analysis:

• HF is correct under an unfair sequential
adversary.

• Enabled actions of HF remain enabled
despite concurrent executions.

• Enabled actions of HF are executed identically
in sequential and asynchronous settings.

• Any asynchronous execution of HF can be
serialized.

• Any asynchronous execution of HF terminates.

𝑡𝑖𝑚𝑒 →

Asynchronous Hexagon Formation

The combination of:

• Correctness under an unfair sequential adversary,

• Enabled actions remaining enabled despite concurrency, and

• Enabled actions executing identically in sequential and asynchronous settings

immediately yields serializability and asynchronous termination, which in turn yield
asynchronous correctness.

(No “realism
compiler”
needed!)

Unfair
Sequential

Algorithm 𝒜

Unfair
Asynchronous
Algorithm 𝒜′

A General Framework for Concurrency Control

Another approach to concurrency control: use locks to mitigate changes to an amoebot’s
neighborhood while it is active.

We developed a novel algorithm for mutual exclusion (locking) in asynchronous, anonymous,
dynamic (moving), constant-size memory message passing systems.

Key Idea:

• On activation, an amoebot 𝐴 first attempts to lock its neighborhood.

• If successful, its locked neighbors cannot move or change their memory contents.

• So 𝐴 can evaluate its guards and perform its actions as if things were sequential (sort of).

• Failed locking attempts and expansions have no effect on the rest of the system.

Key Issue: Locks can’t stop amoebots from expanding into an acting amoebot’s neighborhood!

A General Framework for Concurrency Control

We introduce a set of conventions that must be satisfied for the protocol to apply.

Convention 1: Any execution of an enabled action must succeed in the sequential setting.

Convention 2: All compute operations must precede at most one movement operation.

Convention 3: Monotonicity. Action executions cannot be affected by (unlocked) amoebots
that concurrently enter the acting amoebot’s neighborhood.

Open Question: What amoebot algorithms satisfy monotonicity?

Static algorithms (i.e., those
that don’t involve movement)
are trivially monotonic. This
includes most of the leader
election algorithms.

A General Framework for Concurrency Control

1. Validity. Any execution of an enabled action succeed in the sequential setting.

2. Computing Before Moving. Compute operations precede movement operations.

3. Monotonicity. Action executions are not affected by (unlocked) amoebots that concurrently
enter the acting amoebot’s neighborhood.

Theorem. Consider any algorithm 𝒜 satisfying Conventions 1-3 and let 𝒜′ be the algorithm
obtained by the concurrency control protocol. If 𝒜 terminates under any sequential execution,
then every asynchronous execution of 𝒜′ terminates in some sequential outcome of 𝒜.

Concurrency
Control Protocol

Unfair
Sequential

Algorithm 𝒜

Unfair
Asynchronous
Algorithm 𝒜′

Part II

The Amoebot Model and its Enhancements

How can existing algorithms be enhanced to capture more realistic assumptions?

By satisfying certain conventions, energy-agnostic, sequential algorithms
can be made energy-constrained and asynchronous.

Part III

Stochastic Distributed Algorithms & Their Applications
to Swarm Robotics and Granular Active Matter

How can digital algorithms be translated for simple, analog (passive) systems?

Connect biased random decisions to the physics of local interactions.

Conclusion: Algorithmic Foundations of Programmable Matter

1. What are the minimum individual capabilities
necessary to achieve system behavior 𝑋?

Constant-size memory, communication, and local
movements suffice for complex behaviors.

2. How can existing algorithms be enhanced to
capture more realistic assumptions?

By satisfying certain conventions, energy-agnostic,
sequential algorithms can be made energy-
constrained and asynchronous.

3. How can digital algorithms be translated for
simple, analog (passive) systems?

Connect biased random decisions to the physics of
local interactions.

What’s Next?

A postdoc with Stephanie Forrest
at the ASU Biodesign Institute!

I’ve Got Some People Who Carry Me

Thank you!
sops.engineering.asu.edu

jdaymude.github.io

https://sops.engineering.asu.edu/
https://jdaymude.github.io/

List of Publications: Dissertation (Chronologically)

Paper Conference Journal

“A Markov Chain Algorithm for Compression in Self-Organizing Particle
Systems.” Cannon, D., Randall, Richa.

PODC 2016 In Preparation

“A Stochastic Approach to Shortcut Bridging in Programmable Matter.” Andrés
Arroyo, Cannon, D., Randall, Richa.

DNA 2017 Natural
Computing

“On the Runtime of Universal Coating for Programmable Matter.” D.,
Derakhshandeh, Gmyr, Porter, Richa, Sheideler, Strothmann.

Natural
Computing

“Improved Leader Election for Self-Organizing Programmable Matter.” D.,
Gmyr, Richa, Scheideler, Strothmann.

ALGOSENSORS
2017

“Phototactic Supersmarticles.” Savoie, Cannon, D., Warkentin, Li, Richa, Randall,
Goldman.

Artificial Life
and Robotics

“A Local Stochastic Algorithm for Separation in Heterogeneous Self-
Organizing Particle Systems.” Cannon, D., Gökmen, Randall, Richa.

PODC 2018 (BA)
RANDOM 2019

In Preparation

“Convex Hull Formation for Programmable Matter.” D., Gmyr, Hinnenthal,
Kostitsyna, Scheideler, Richa.

ICDCN 2020

“Bio-Inspired Energy Distribution for Programmable Matter.” D., Richa, Weber. ICDCN 2021

List of Publications: Dissertation (Chronologically)

Paper Conference Journal

“Programming Active Granular Matter with Mechanically Included Phase
Changes.” Li, Dutta, Cannon, D., Avinery, Aydin, Richa, Goldman, Randall.

Science
Advances

“The Canonical Amoebot Model: Algorithms and Concurrency Control.” D.,
Richa, Scheideler.*

In Preparation

List of Publications: Non-Dissertation (Chronologically)

*Under review.

**Manuscript in preparation.

Paper Conference Journal

“Computing by Programmable Particles.” D., Hinnenthal, Richa, Scheideler.
Book Chapter in Distributed Computing by Mobile Entities.

2018

“Simulation of Programmable Matter Systems Using Active Tile-Based Self-
Assembly.” Alumbaugh, D., Demaine, Patitz, Richa.

DNA 2019 Natural
Computing*

“Preventing Extreme Polarization of Political Attitudes.” Axelrod, D., Forrest. PNAS*

“Mutual Exclusion for Asynchronous, Anonymous, Dynamic, Constant-Size
Memory Message Passing Systems.” D., Scheideler, Richa.

DISC 2021**

“AmoebotSim: A Visual Simulator for the Amoebot Model of Programmable
Matter.” D., Gmyr, Hinnenthal.**

“Aggregation Without Computation: Negative Results and a Noisy, Discrete
Adaptation.” D., Harasha, Richa, Yiu.**

