
The Canonical Amoebot Model:
Algorithms and Concurrency Control

Joshua J. Daymude and Andréa W. Richa (Arizona State University)

Christian Scheideler (Universität Paderborn)

DISC 2021, Freiburg, Germany (Hybrid Event) — October 5–7, 2021



Programmable Matter

Programmable matter is a substance that can change its physical properties autonomously 
based on user input or environmental stimuli.

“Catoms”
PB 2018

“Kilobots”
RCN 2014

“M-Blocks”
RGR 2013

“Particle Robots” 
LBBCRHRL 2019

https://link.springer.com/article/10.1007/s10514-018-9710-0
http://science.sciencemag.org/content/345/6198/795
https://ieeexplore.ieee.org/document/6696971
https://www.nature.com/articles/s41586-019-1022-9


The Geometric Amoebot Model (Before This Paper)

The (geometric) amoebot model is an abstraction of programmable matter.

• Space: triangular lattice 𝐺Δ.

• Amoebots can be contracted (one node)
or expanded (two adjacent nodes).

• Amoebots are anonymous, have only 
constant-size memories, communicate
with immediate neighbors, and have no
global compass.

• Self-actuated movements via expansions,
contractions, and handovers.

• Sequential, weakly fair adversary: one
amoebot acts per time, every amoebot acts
infinitely often.



A Short History of the Amoebot Model

~30 papers: Models, shape formation, leader election, object coating, Markov chains, and more!



Related Models

The amoebot model considers active entities in space, unlike non-spatial, passive models like 
population protocols, network constructors, and tile-based self-assembly.

The most closely related model is autonomous mobile robots (see [FPS 2019] for a recent 
overview), specifically those using discrete, graph-based models of space.

Similarities

• Anonymous individuals.

• Active movements w/o global orientation.

• Limited compute/sensing capabilities.

• Persistent memory (ℱ-state). [BDS 2008]

• Limited communication (luminous robots). 
[DFPSY 2012, DFPSY 2016, DFCPSV 2017]

Differences

• Amoebots respect physical exclusion.

• Mobile robots use look-compute-move
cycles that are difficult to reconcile with 
traditional message-passing.

• Mobile robots have a hierarchy of 
adversarial schedulers; amoebots usually 
assume sequential activations.



Overview of Results

1) The Canonical Amoebot Model

• Provides a standardized hierarchy of assumption variants to better facilitate comparisons.

• Models communication via message passing to address concurrency using standard 
adversarial activation models.

2) Sufficient Conditions for Concurrent Correctness

• Identifies sufficient conditions for amoebot algorithm correctness under any adversary.

• Shows that an algorithm for hexagon formation exists that satisfies these conditions.

3) A General Framework for Concurrency Control

• Converts algorithms that terminate under a sequential adversary and satisfy certain 
conventions into algorithms that exhibit equivalent behavior under an asynchronous 
adversary.



The Canonical Amoebot Model

The standardized hierarchy of assumption variants:

* have been considered in previous work; † are the focus of algorithmic results in this work.



The Canonical Amoebot Model

In the canonical amoebot model, amoebot functionality is partitioned into:

• A higher-level application layer where algorithms are defined in terms of operations.

• A lower-level system layer that executes an amoebot’s operations via message passing.



The Canonical Amoebot Model

Algorithms in the canonical amoebot model are specified in terms of actions:

𝑙𝑎𝑏𝑒𝑙 ∶ 𝑔𝑢𝑎𝑟𝑑 → ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠⟩

• 𝑙𝑎𝑏𝑒𝑙 specifies the action’s name.

• 𝑔𝑢𝑎𝑟𝑑 is a Boolean predicate determining whether this action is currently enabled.

• 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 specifies the computation and sequence of operations to perform if enacted.

Example from Hexagon-Formation:



The Canonical Amoebot Model

We use an adversary to model timing and progress. Four levels of concurrency:

1) Sequential. At most one amoebot can be 
active at a time.

2) 𝒌-isolated. No amoebots within distance
𝑘 can be simultaneously active.

3) Synchronous. Arbitrary sets of amoebots 
can be active in each discrete round.

4) Asynchronous. Arbitrary sets of amoebots
can be simultaneously active.



The Canonical Amoebot Model

The adversary can only activate amoebots with enabled actions. Three levels of fairness:

1) Strongly Fair. Every amoebot that is enabled infinitely often is activated infinitely often.

2) Weakly Fair. Every continuously enabled amoebot is eventually activated.

3) Unfair. Some enabled amoebot is eventually activated.

The rest of this talk will primarily focus on unfair asynchronous adversaries, the most general of 
all adversarial activation models.

Informally: the adversary can activate any amoebot with something to do whenever it wants to.



Asynchronous Hexagon Formation

Problem: Reconfigure any connected amoebot system as a regular hexagon, assuming there is 
a unique seed amoebot initially in the system.



Asynchronous Hexagon Formation

We formulate a Hexagon-Formation algorithm in terms of actions based on [DGRSS 2015].



Asynchronous Hexagon Formation

Theorem. Assuming geometric space, assorted orientations, and constant-size memory, 
Hexagon-Formation (HF) is correct under any (i.e., an unfair asynchronous) adversary.

Outline of analysis:

• HF is correct under an unfair sequential
adversary.

• Enabled actions of HF remain enabled despite
concurrent executions.

• Enabled actions of HF are executed identically
in sequential and asynchronous executions.

• The action executions of any asynchronous
execution of HF can be serialized.

• Any asynchronous execution of HF terminates.



Sufficient Conditions for Concurrent Correctness

Our analysis of Hexagon-Formation shows that any algorithm satisfying

1. correctness under an unfair sequential adversary,

2. enabled actions remaining enabled despite concurrent action executions, and

3. enabled action executions remaining successful/unaffected by concurrent action executions

must also be correct under an unfair asynchronous adversary, the most general of all.

Notably, this is true without using the Lock/Unlock operations, demonstrating that while useful, 
locks are not always necessary for designing correct concurrent amoebot algorithms.



A General Framework for Concurrency Control

We’ve shown how individual algorithms can be designed with actions that are ambivalent to 
the effects of concurrency, but this can be difficult to achieve in general.

Here, we use locks to lift correct sequential algorithms to the asynchronous setting.

This is the best of both worlds: the ease of designing algorithms in the sequential setting and 
the relevance of correct execution in the more realistic concurrent setting.

This is too optimistic and may be impossible to guarantee in general, so instead we only 
consider algorithms 𝒜 that obey certain conventions.

Concurrency 
Control 

Framework

Unfair 
Sequential 

Algorithm 𝒜

Unfair 
Asynchronous 
Algorithm 𝒜′

Conventions



A General Framework for Concurrency Control

Key Ideas:

• On activation, an amoebot 𝐴 first attempts to lock its neighborhood.

• If successful, its locked neighbors cannot move or change their memory contents.

• So 𝐴 can evaluate its guards and perform its actions as if things were sequential (sort of).

• Failed locking attempts and expansions have no effect on the rest of the system.

Key Issue: Locks can’t stop amoebots from expanding into an acting amoebot’s neighborhood!

Example. “If I have no neighbors, then expand in the ‘forward’ direction.”



A General Framework for Concurrency Control

We introduce a set of conventions that must be satisfied for the framework to apply.

Convention 1: Any execution of an enabled action must succeed in the sequential setting.

Convention 2: All compute operations must precede at most one movement operation.

Convention 3: Monotonicity. Action executions cannot be affected by (unlocked) amoebots 
that concurrently enter the acting amoebot’s neighborhood.

Open Question: What amoebot algorithms satisfy monotonicity?

Static algorithms (i.e., those 
that don’t involve movement) 
are trivially monotonic. This 
includes most of the leader 
election algorithms.



A General Framework for Concurrency Control

1. [Failure Point 1] Attempt to Lock.

2. Evaluate all guards of actions in 𝒜.

3. If there is an enabled action, emulate its 
compute phase (Connected, Read, and 
Write operations) in private memory.

4. [Failure Point 2] If there’s an Expand 
operation, attempt to do so.

5. Perform any Write operations decided on 
in the compute phase.

6. Handle any other movement types.

Other bookkeeping throughout: Unlocks, 
setting act/awaken bits, etc.



A General Framework for Concurrency Control

1. Validity. Any execution of an enabled action succeeds in the sequential setting.

2. Computing Before Moving. Compute operations precede movement operations.

3. Monotonicity. Action executions are not affected by (unlocked) amoebots that concurrently 
enter the acting amoebot’s neighborhood.

Theorem. Consider any algorithm 𝒜 satisfying Conventions 1-3 and let 𝒜′ be the algorithm 
obtained by the concurrency control framework. If 𝒜 terminates under any sequential 
execution, then every asynchronous execution of 𝒜′ terminates in an outcome that some 
sequential execution of 𝒜 also terminates in.

Concurrency 
Control 

Framework

Unfair 
Sequential 

Algorithm 𝒜

Unfair 
Asynchronous 
Algorithm 𝒜′



Open Questions

• When existing amoebot algorithms are standardized according to the canonical model’s 
hierarchy of assumptions and described in action semantics, how do they compare?

• How should the canonical model be extended to address fault tolerance? To date, crash 
faults have been considered for specific problems [DFPSV 2018, DRW 2021].

• We know static algorithms satisfy monotonicity — what about algorithms with movement?

• Do there exist algorithms that are not correct under an asynchronous adversary but are 
compatible with our concurrency control framework?

• Are there other, less restrictive sufficient conditions for asynchronous correctness?



Thank you!
sops.engineering.asu.edu

jdaymude.github.io

@joshdaymude

https://sops.engineering.asu.edu/
https://jdaymude.github.io/
https://twitter.com/joshdaymude

