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Self-Organizing Systems

Cooperative decentralized systems are capable of surprising emergent behavior arising from 
relatively simple interactions of their members.

HMSKCLCA 2011
Microsoft Research 2016

2

https://iopscience.iop.org/article/10.1088/1478-3975/8/2/026016
https://www.youtube.com/watch?v=3SYYW_7Ah7c


Why Self-Organization?

Challenge #1: Engineering autonomous, distributed systems with arbitrary scalability.

Challenge #2: Characterizing observed emergent phenomena in complex systems.
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Programmable Matter

Programmable matter is a substance that can change its physical properties autonomously 
based on user input or environmental stimuli.

“Catoms”
PB 2018

“Kilobots”
RCN 2014

“M-Blocks”
RGR 2013

“Particle Robots” 
LBBCRHRL 2019
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https://link.springer.com/article/10.1007/s10514-018-9710-0
http://science.sciencemag.org/content/345/6198/795
https://ieeexplore.ieee.org/document/6696971
https://www.nature.com/articles/s41586-019-1022-9


Programmable Matter

Centimeter/millimeter-scale robots are more limited than, say, Spot from Boston Dynamics.

Most programmable matter and modular robotic systems assume:

• Modest compute resources.

• Strictly local sensing and communication (e.g., 1-neighborhood).

• Limited (e.g., constant-size) or no persistent memory.

• Local, rudimentary movement.
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Stateful Distributed Algorithms for Programmable Matter

Under the amoebot model [Derakhshandeh et al. 2014] we’ve shown that constant-size 
memory, local communication between neighbors, and local movements suffice to solve:

1. Leader Election. A unique amoebot must irreversibly declare itself the system’s leader.

2. Object Coating. The system must reconfigure into even layers coating a given object.

3. Convex Hull Formation. The system must reconfigure as the convex hull of a given object, 
enclosing it with the minimum number of amoebots.
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[1] Daymude, Gmyr, Richa, Scheideler, Strothmann. “Improved Leader Election for Self-Organizing Programmable Matter.” ALGOSENSORS 2017.
[2] Daymude, Derakhshandeh, Gmyr, Porter, Richa, Scheideler, Strothmann. “On the Runtime of Universal Coating for Programmable Matter.” Natural Computing, 2018.
[3] Daymude, Gmyr, Hinnenthal, Kostitsyna, Scheideler, Richa. “Convex Hull Formation for Programmable Matter.” ICDCN 2020.



Active Granular Matter

A granular material is a “conglomerate of discrete, solid, macroscopic particles.” [Duran 1999].

These systems don’t “compute” digitally but are still capable of sophisticated collective 
behaviors and surprising phase changes.

How can digital algorithms for collective behavior be translated to simple, analog systems?
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Wikipedia Bob Behringer KSRS 2014

https://en.wikipedia.org/wiki/Granular_material#/media/File:Granular_matter_examples.PNG
https://webhome.phy.duke.edu/~bob/
https://www.nature.com/articles/ncomms5688


From Rigorous Algorithms to Analog Robots

Key Idea. Leverage physical interactions to translate digital algorithms for simple analog robots.

Consider aggregation, where robots gather compactly, and dispersion, its inverse.
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Compression

Problem. Using local, distributed rules, how can particles “compress,” gathering compactly while 
remaining simply connected?

Definition: A configuration is 𝜶-compressed if its perimeter is at most 𝛼 times the minimum 
perimeter (for this number of particles).
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Not compressed Compressed

[4] Cannon, Daymude, Randall, Richa. “A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.” PODC 2016.



The Markov Chain ℳ𝐶 for Compression

This distributed, stochastic algorithm for compression:

• Ensures system connectivity on the triangular lattice.

• Uses Metropolis probabilities to converge to 𝜋 𝜎 ∝ 𝜆𝑒(𝜎), for bias parameter 𝜆 > 1.
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Fix 𝜆 > 1. Start in any connected configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with probability min 𝜆𝑒
′−𝑒, 1

if connectivity is maintained.

4. Otherwise, do nothing.

total # of edges, or
nearest-neighbor pairs

# potential neighbors
− # current neighbors

[4] Cannon, Daymude, Randall, Richa. “A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.” PODC 2016.



The Markov Chain ℳ𝐶 for Compression

Iteration 1: 𝑒 = 3, 𝑒′ = 4, Pr 𝑚𝑜𝑣𝑒 = 𝜆4−3 = 𝜆 > 1.

Iteration 2: 𝑒 = 4, 𝑒′ = 2, Pr 𝑚𝑜𝑣𝑒 = 𝜆2−4 = 1/𝜆2.
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Fix 𝜆 > 1. Start in any connected 
configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with 

probability min 𝜆𝑒
′−𝑒, 1 if connectivity is 

maintained.

4. Otherwise, do nothing.

[4] Cannon, Daymude, Randall, Richa. “A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.” PODC 2016.



The Markov Chain ℳ𝐶 for Compression: 𝜆 = 4
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100 particles after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million iterations,
or roughly 𝒪 𝑛3 rounds.

[4] Cannon, Daymude, Randall, Richa. “A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.” PODC 2016.



The Markov Chain ℳ𝐶 for Compression: 𝜆 = 2
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100 particles after (a) 10 million and (b) 20 million iterations.

[4] Cannon, Daymude, Randall, Richa. “A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.” PODC 2016.



Compression: Results

Definition. A configuration is 𝜶-compressed if its perimeter is at most 𝛼 times the minimum 
perimeter (for this number of particles).

Theorem. When 𝜆 > 2 + 2, there exists an 𝛼 = 𝛼(𝜆) such that the particle system is
𝛼-compressed at stationarity almost surely.

• For example, when 𝜆 = 4, we have 𝛼 = 9.

Theorem. When 𝜆 < 2.17, for any 𝛼 > 1, the probability the particle system is 𝛼-compressed at 
stationarity is exponentially small.
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No compression (expansion) Compression2 + 22.17 𝜆

[4] Cannon, Daymude, Randall, Richa. “A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems.” PODC 2016.



BOBbots: Behaving, Organizing, Buzzing Robots

Our BOBbots (named in honor of granular materials pioneer Prof. Bob Behringer, 1948-2018) 
replace all digital computation, sensing, and communication with physical interactions.

• Choosing a random node to move to ⇒ Noisy motion.

• Bias parameter 𝜆 ⇒ Magnets of varying strengths.
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[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



BOBbots: Behaving, Organizing, Buzzing Robots

Many “leaps” from the theory for compression!

• Continuous vs. discrete space.

• Noisy but not random motion.

• Nonuniform robots.
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[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



Relaxing Compression for Aggregation

Two requirements in compression that are “unnatural” for the BOBbots:

1. The connectivity requirement. 

2. The look ahead requirement.
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Fix 𝜆 > 1. Start in any connected configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with probability min 𝜆𝑒
′−𝑒, 1

if connectivity is maintained.

4. Otherwise, do nothing.
#1

#2

𝜆−𝑒

[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



Relaxing Connectivity: Separation

Problem. Using local, distributed rules, how can heterogeneous particles “compress” overall 
while also separating into mostly monochromatic groups?
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Neither compressed nor separated Compressed and separated

[6] Cannon, Daymude, Gökmen, Randall, Richa. “A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems.” APPROX/RANDOM 2019.



Relaxing Connectivity: Separation

Considered the separation problem in 2-color systems and proved results for:

• Particles with fixed colors that can move around.

• Particles with fixed positions (𝛼-compressed) that can swap colors with their neighbors.

19[6] Cannon, Daymude, Gökmen, Randall, Richa. “A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems.” APPROX/RANDOM 2019.



Relaxing Connectivity: Separation

Definition. A configuration is (𝜷, 𝜹)-separated if there is a subset 𝑅 of particles such that:

1. At most 𝛽 𝑛 edges have exactly one endpoint in 𝑅.

2. The density of particles of color 𝑐1 in 𝑅 is at least 1 − 𝛿.

3. The density of particles of color 𝑐1 not in 𝑅 is at most 𝛿.

A configuration is integrated if no such 𝛽, 𝛿 exist.

Theorem. Among bicolored 𝛼-compressed configurations, when 𝜆 > 5.66, there exist 𝛽, 𝛿 such 
that the particle system is 𝛽, 𝛿 -separated almost surely. However, when 0.98 < 𝜆 < 1.02, the 
particle system is integrated almost surely. 

20

Integration Separation5.66𝜆1.020.98

[6] Cannon, Daymude, Gökmen, Randall, Richa. “A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems.” APPROX/RANDOM 2019.



Relaxing Connectivity: Separation

This phase change provably occurs among 𝛼-compressed configurations, even in the case 
where particles have fixed positions but swap colors with their neighbors.

What if we treat black particles as real and white particles as unoccupied nodes?

Key Idea. Our results for separation also hold for aggregation in the disconnected setting!
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Integration Separation5.66𝜆1.020.98

[6] Cannon, Daymude, Gökmen, Randall, Richa. “A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems.” APPROX/RANDOM 2019.



Relaxing Compression for Aggregation

Two requirements in compression that are “unnatural” for the BOBbots:

1. The connectivity requirement. We use separation to generalize to the disconnected setting.

2. The look ahead requirement.
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Fix 𝜆 > 1. Start in any connected configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with probability min 𝜆𝑒
′−𝑒, 1

if connectivity is maintained.

4. Otherwise, do nothing.
#1

#2

[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



Relaxing Look Ahead

The min 𝜆𝑒
′−𝑒, 1 transition probabilities come from the Metropolis-Hastings algorithm.

In Metropolis-Hastings, if we want a Markov chain to converge to a stationary distribution 𝜋, 

then we set the transition probability 𝑃 𝜎, 𝜏 = min
𝜋 𝜏

𝜋 𝜎
, 1 .

Want to converge to 𝜋 𝜎 ∝ 𝜆𝑒 𝜎 , where 𝑒 𝜎 is the number of neighboring pairs in 𝜎.

So, when 𝜎 → 𝜏 is the movement of a single particle 𝑝, we have:

𝑃 𝜎, 𝜏 = min
𝜋 𝜏

𝜋 𝜎
, 1 = min

𝜆𝑒 𝜏

𝜆𝑒 𝜎
, 1 = min 𝜆𝑒 𝜏 −𝑒 𝜎 , 1 = min 𝜆𝑒

′−𝑒, 1

where 𝑝 has 𝑒 neighbors in 𝜎 and 𝑒′ neighbors in 𝜏.
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[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



Relaxing Look Ahead

Claim. Transition probabilities 𝜆−𝑒 also converge to 𝜋 𝜎 ∝ 𝜆𝑒 𝜎 but only use current 
neighborhood information!

Verify this by checking detailed balance: 𝜋 is the unique stationary distribution of a Markov 
chain with transition probabilities 𝑃 if:

𝜋 𝜎 𝑃 𝜎, 𝜏 = 𝜋 𝜏 𝑃 𝜏, 𝜎 for all 𝜎, 𝜏

Proof. Consider any 𝜎 → 𝜏 differing by the move of a single particle 𝑝 with 𝑒 neighbors in 𝜎 and 
𝑒′ neighbors in 𝜏. Then:

𝑃 𝜎, 𝜏

𝑃 𝜏, 𝜎
=

𝜆−𝑒

𝜆−𝑒
′ = 𝜆𝑒

′−𝑒 =
𝜋 𝜏

𝜋 𝜎

where the final equality follows from Metropolis-Hastings (last slide).

Rearranging terms recovers detailed balance. ∎
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[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



Relaxing Compression for Aggregation

Two requirements in compression that are “unnatural” for the BOBbots:

1. The connectivity requirement. We use separation to generalize to the disconnected setting.

2. The look ahead requirement. Transition probabilities 𝜆−𝑒 still converge to 𝜋 𝜎 ∝ 𝜆𝑒 𝜎 .
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Fix 𝜆 > 1. Start in any connected configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with probability min 𝜆𝑒
′−𝑒, 1

if connectivity is maintained.

4. Otherwise, do nothing.
#1

#2

𝜆−𝑒

[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



The Markov Chain ℳ𝐴 for Aggregation

Lemma. The unique stationary distribution of ℳ𝐴 is 𝜋 𝜎 ∝ 𝜆𝑒 𝜎 .

Theorem. Among configurations with 𝛼-compressed boundaries, when 𝜆 > 5.66, there exist 𝛽, 𝛿
such that the particle system is 𝛽, 𝛿 -aggregated almost surely. However, when 0.98 < 𝜆 < 1.02, 
the particle system is dispersed almost surely.
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[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.

Fix 𝜆 > 1. Start in any (bounded) configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with probability 𝜆−𝑒.

4. Otherwise, do nothing.

Dispersion Aggregation5.66𝜆1.020.98



BOBbots: Aggregation and Dispersion

Our proofs indicate a phase change from dispersion to aggregation in 𝜆-space.

BOBbot experiments indicate the same in magnet strength (𝐹𝑀) space.
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𝐹𝑀 = 5g
(Dispersion)

𝐹𝑀 = 19g
(Aggregation)

[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



BOBbots: Aggregation and Dispersion

We map 𝐹𝑀 to 𝜆 in experiments to obtain 𝜆𝑒𝑓𝑓 = exp 𝛽𝐹𝑀 , where 𝛽 is inverse temperature, 

yielding agreement between the theoretical predictions and the empirical data.
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Dispersion Aggregation

[5] Li, Dutta, Cannon, Daymude, Avinery, Aydin, Richa, Goldman, Randall. “Programming Active Cohesive Granular Matter with Mechanically Induced Phase Changes.” 
Science Advances, 2021.



Summary: Aggregation for Analog Robots

How can digital algorithms for collective behavior be translated to simple, analog systems?

Connect biased random decisions to the physics of local interactions.

29

Markov chain ℳ𝐶 for 
Compression

Markov chain ℳ𝐴 for 
Aggregation

Aggregation in 
BOBbots



Bridging Algorithmic Theory to Physical Mechanics

Design distributed algorithms that leverage equilibrium statistical physics to quantitatively 
capture and predict the nonequilibrium dynamics of living and analog systems.
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Eciton army ants
RLPKCG 2015

Distributed, Stochastic Algorithm

Shortcut Bridging

[7] Andrés Arroyo, Cannon, Daymude, Randall, Richa. “A Stochastic Approach to Shortcut Bridging in Programmable Matter.” Natural Computing, 2018.
[8] Savoie, Cannon, Daymude, Warkentin, Li, Richa, Randall, Goldman. “Phototactic Supersmarticles.” Artificial Life and Robotics, 2018.

Directed Locomotion

“Supersmarticle”
Collectives

http://www.pnas.org/content/112/49/15113.abstract


Characterizing Biological and Social Complex Systems

Use formal distributed modeling to characterize observed emergent phenomena in complex 
systems as a function of the local interactions that produce them.

My recent work has modeled and analyzed the dynamics of political polarization.

31[9] Axelrod, Daymude, Forrest. “Preventing Extreme Polarization of Political Attitudes.” To appear in PNAS, 2021.

Pew
Research
Center

https://www.pewresearch.org/politics/2014/06/12/political-polarization-in-the-american-public/


Characterizing Biological and Social Complex Systems

Our Attraction-Repulsion Model (ARM) has two simple rules:

1. Actors tend to be exposed to views similar to their own (exposure w.p. (1/2)𝑑/𝐸).

2. Interaction between similar actors (within tolerance 𝑇) reduces their ideological difference 
(by a fraction 𝑅), while interaction between dissimilar actors increases their difference.

32[9] Axelrod, Daymude, Forrest. “Preventing Extreme Polarization of Political Attitudes.” To appear in PNAS, 2021.
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Characterizing Biological and Social Complex Systems

The ARM suggests that extreme polarization 
can be mitigated with:

• High tolerance 𝑇 (leads to consensus).

• Low exposure 𝐸 (encourages insulated 
communities).

• Any self-interest for a moderate position 
(leads to bimodal or centrist distributions).

• Very early or very strong external shock 
(leads to consensus).

33[9] Axelrod, Daymude, Forrest. “Preventing Extreme Polarization of Political Attitudes.” To appear in PNAS, 2021.



Conclusion

1. Constant-size memory, local communication, 
and local movements suffice to program 
many desired behaviors in digital collectives.

2. By connecting biased random decisions to 
the physics of local interactions, we can 
translate digital algorithms driving emergent 
collective behavior for simple analog robots.

3. This same framework can suggest local rules 
and decisions that capture observed 
collective behavior in biological and social 
complex systems.
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Thank you!
jdaymude.github.io

https://jdaymude.github.io/

