
Local Mutual Exclusion for Dynamic, Anonymous,
Bounded Memory Message Passing Systems

Joshua J. Daymude and Andréa W. Richa (Arizona State University)

Christian Scheideler (Universität Paderborn)

SAND 2022 (Virtual Event) — March 28–30, 2022

https://www.sand-conf.org/


Motivation: Lifting Message Passing to Interactions

Traditionally, distributed computing models have lived in two communication paradigms: 
message passing and shared memory.

More recent application-focused models—especially for swarm robotics, programmable matter, 
mobile sensor networks, and so on—have flirted with more abstract interactions.

• Population protocols consider pairwise, stateful interactions.

• Chemical reaction networks consider “reactions” that convert entities based on type.

• Various programmable matter models, like the amoebot model, have traditionally assumed 
particles can access their neighbors’ memory when performing actions.

How do we bridge these two paradigms, especially in concurrent, dynamic settings?



Time-Varying Graphs: Dynamics

We extend the established time-varying graphs model [Casteigts et al., 2012; Casteigts 2018]
to interoperate with asynchronous message passing and either semi-synchronous or 
asynchronous node activation.

We assume an adversary controls which edges exist in each round, and that the underlying 
graph is complete (i.e., the adversary can introduce any edge).

Each node has the same fixed number of ports Δ > 0; the adversary cannot assign a new edge 
to a node with no open ports. All nodes are anonymous, lacking unique IDs, but a node 𝑢 can 
locally identify an incident edge 𝑢, 𝑣 with a port label ℓ𝑢 𝑣 ∈ 1,… , Δ .

https://doi.org/10.1080/17445760.2012.668546
https://hal.archives-ouvertes.fr/tel-01883384/


Time-Varying Graphs: Communication and Actions

Nodes communicate via (asynchronous) message passing. A message 𝑚 sent from 𝑢 to 𝑣
remains in transit until either 𝑣 receives it (at a time chosen by the adversary) or 𝑢 and 𝑣 are 
disconnected, at which point 𝑚 is lost.

Distributed algorithms are encoded as actions: 𝑙𝑎𝑏𝑒𝑙 ∶ 𝑔𝑢𝑎𝑟𝑑 → 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 .

A guard is a Boolean predicate determining whether the action is enabled for a node based on 
its state and any messages in transit that it might receive.

The operations specify what a node does when executing the action, following the form:

• Receive at most one message chosen by the adversary.

• Perform a finite amount of computation and/or state updates.

• Send at most one message per port label.



Time-Varying Graphs: Node Activation

An adversary controls when nodes are activated and which (enabled) actions they execute.

Semi-Synchrony. In each round, the adversary concurrently activates any (possibly empty) 
subset of nodes with enabled actions. Those action executions are guaranteed to complete 
within that round (i.e., before the adversary changes the topology again).

Asynchrony. Same setup semi-synchrony, but action executions may span multiple rounds (i.e., 
action executions may be concurrent with topology changes).

Weak Fairness. Any action that is continuously enabled for a node is eventually executed, and 
any message in transit on a continually existent edge is eventually processed.



Local Mutual Exclusion

Informally, enable nodes exclusive access to themselves and their immediate neighbors, or to as 
many as possible given topological changes.

Each node 𝑢 stores lock 𝑢 ∈ ⊥, 0, … , Δ that is ⊥ if 𝑢 is unlocked, 0 if 𝑢 has locked itself, and 
ℓ𝑢 𝑣 ∈ 1, … , Δ if 𝑢 is locked by 𝑣.

The lock set of node 𝑢 in round 𝑖 is ℒ𝑖 𝑢 = 𝑣 ∈ 𝑁𝑖 𝑢 lock 𝑣 = ℓ𝑣 𝑢 , which also includes 𝑢
itself if lock 𝑢 = 0.

Given rounds 𝑖 and 𝑗 > 𝑖, the persistent (closed) neighborhood of 𝑢 are those neighbors that 
remain connected to 𝑢 in rounds 𝑖 through 𝑗: 𝑢 ∪ 𝑣 ∈ 𝑁𝑖 𝑢 ∀𝑡 ∈ 𝑖, 𝑗 , 𝑢, 𝑣 ∈ 𝐺𝑡 .



Local Mutual Exclusion

The local mutual exclusion problem requires Lock and Unlock operations satisfying:

Mutual Exclusion. For all rounds 𝑖 ∈ 𝑇 and all pairs of nodes 𝑢, 𝑣 ∈ 𝑉, ℒ𝑖 𝑢 ∩ ℒ𝑖 𝑣 = ∅.

Lockout Freedom. Every issued lock request eventually succeeds—i.e., the issuing node’s lock 
set equals its persistent neighborhood—with probability 1.

Note! Because each node’s lock 𝑢 variable can point to at most one node, mutual exclusion is 
trivially satisfied. Lockout freedom, however, remains challenging.



Related Work

Our focus is on dynamic, anonymous, bounded memory message passing systems.

• Classical mutual exclusion algorithms [Singhal, 1993 (survey)] often used some combination 
of unique identifiers, global coordination, and unbounded counters (Lamport-style clocks).

• The arrow protocol [Demmer and Herlihy, 1998] uses Θ 1 per node, but it’s not obvious 
how to extend it to dynamic underlying topology, despite recent improvements [Ghodselahi
and Kuhn, 2017; Khanchandani and Wattenhofer, 2019].

• Our mutual exclusion variant deals with exclusive access over neighborhoods. This is most 
closely related to distance-3 independent sets and (𝜶, 𝜷)-ruling sets [Awerbuch et al., 
1989; Schneider et al., 2013; Kuhn et al., 2018], whose algorithms typically assume static 
topologies, unique identifiers, and synchronous message delivery.

• Related problems appear in contention resolution in mobile ad-hoc networks [e.g., Attiya et 
al., 2010; Sharma et al., 2014], though these often rely on tokens or wall-clock timing.

https://doi.org/10.1006/jpdc.1993.1048
https://doi.org/10.1007/BFb0056478
https://doi.org/10.4230/LIPICS.DISC.2017.22
https://doi.org/10.1145/3323165.3323181
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1016/j.tcs.2012.09.004
https://doi.org/10.1007/978-3-030-01325-7_19
https://doi.org/10.1109/TMC.2009.137
https://doi.org/10.3745/JIPS.2014.10.1.036


A Randomized Algorithm for Local Mutual Exclusion

Initiators are nodes issuing lock requests.

• An initiator that calls Lock sends prepare()
messages to its closed neighborhood.

• After receiving ready() messages from all 
(persistent) neighbors, it becomes 
competing and sends request_lock 𝑝
messages to its participants, where 𝑝 is a 
randomly chosen priority.

• If it receives at least one win FALSE
message, it lost this competition and must 
compete again.

• Otherwise, if all responses are win TRUE , it 
sends set_lock() messages, which then get 
acknowledged to conclude Lock.

Participants are those being locked/unlocked.

• On receiving a prepare() message, a 
participant puts the sending initiator into one 
of the following categories:

• “On Hold”, if a competition is already underway.

• An “applicant” for the current competition, to which 
it replies ready().

• Applicants are promoted to candidates on 
receiving their request_lock 𝑝 messages.

• The candidate with the unique highest 
priority wins win TRUE , and all others lose 
win FALSE , remaining to try again.

• Once there are no remaining candidates, 
initiators on hold are promoted to applicants.



Key Results

Theorem. If all nodes start with valid initial values, the local mutual exclusion algorithm satisfies 
the mutual exclusion and lockout freedom properties under semi-synchronous concurrency, 
requires 𝒪 Δ memory per node and messages of size Θ 1 , and has at most two messages in 
transit along any edge at any time.

Lemma. For any asynchronous schedule 𝒮, there exists a semi-synchronous schedule 𝒮′
containing the same action executions as 𝒮 that produces the same outcome for every action 
execution in 𝒮.

Corollary. The local mutual exclusion algorithm also satisfies the mutual exclusion and lockout 
freedom properties under asynchronous concurrency.



Passively Dynamic Application: Population Protocols

Population protocols model passively mobile sensor networks [Angluin et al., 2006].

Typically, a sequential scheduler chooses one pair of agents to act per time. In reality, there may 
be many agents within interacting distance concurrently [Czumaj and Lingas, 2021].

Idea 1. Lock closed neighborhood, and interact with any locked node. This could, in concept, 
support multi-way interactions.

Idea 2. Choose one node to lock, and interact if successful. This may be more efficient in the 
setting where neighborhoods are typically large and only pairwise interactions are desired.

https://doi.org/10.1007/s00446-005-0138-3
https://arxiv.org/abs/2108.11613


Actively Dynamic Application: Canonical Amoebot Model

The canonical amoebot model [DRS, 2021] is an updated formalism for the amoebot model of 
programmable matter dealing with concurrency.

The canonical amoebot model partitions amoebot functionality into:

• A higher-level application layer where algorithms are detailed in terms of operations.

• A lower-level system layer that executes an amoebot’s operations via message passing.

Assumed the existence of Lock and Unlock operations (without giving implementation) for a 
concurrency control framework that converts sequential algorithms into concurrent ones by 
wrapping actions of the sequential algorithms in Lock/Unlock pairs.

Probing those results more carefully, we find that the asynchronous extension of our algorithm 
can directly implement these black box operations.

For the often-considered geometric space variant, where each amoebot has at most eight 
neighbors, our algorithm requires only 𝒪 Δ = Θ 1 memory per node.

https://doi.org/10.4230/LIPIcs.DISC.2021.20


Conclusion

Local mutual exclusion is the bridge between traditional asynchronous message passing and 
atomic “interactions” that depend on the states of a node and its neighbors, even as those 
neighbors might connect and disconnect.

We gave a randomized algorithm that solves local mutual exclusion under both semi-
synchronous and asynchronous concurrency using 𝒪 Δ memory and Θ 1 -sized messages.

We illustrated applications of our algorithm in implementing some underlying assumptions of 
interaction in both passively and actively dynamic systems.



Thank you!
sops.engineering.asu.edu

jdaymude.github.io

@joshdaymude

https://sops.engineering.asu.edu/
https://jdaymude.github.io/
https://twitter.com/joshdaymude

