
Computing by Programmable Particles

Joshua J. Daymude1[0000−0001−7294−5626], Kristian
Hinnenthal2[0000−0001−9464−295X], Andréa W. Richa1, and Christian Scheideler2

1 Computer Science, CIDSE, Arizona State University, Tempe, AZ, USA,
{jdaymude,aricha}@asu.edu

2 Department of Computer Science, Paderborn University, Paderborn, Germany,
{krijan,scheidel}@mail.upb.de

Abstract. The vision for programmable matter is to realize a physical
substance that is scalable, versatile, instantly reconfigurable, safe to han-
dle, and robust to failures. Programmable matter could be deployed in a
variety of domain spaces to address a wide gamut of problems, including
applications in construction, environmental science, synthetic biology,
and space exploration. However, there are considerable engineering and
computational challenges that must be overcome before such a system
could be implemented. Towards developing efficient algorithms for novel
programmable matter behaviors, the amoebot model for self-organizing
particle systems and its variant, hybrid programmable matter, provide
formal computational frameworks that facilitate rigorous algorithmic re-
search. In this chapter, we discuss distributed algorithms under these
models for shape formation, shape recognition, object coating, compres-
sion, shortcut bridging, and separation in addition to some underlying
algorithmic primitives.

Keywords: programmable matter, self-organizing particle systems, distributed
algorithms

1 Introduction

The idea of a robot that can transform into different shapes and sizes (e.g.,
Hasbro’s Transformers) or multitudes of tiny mobile robots that collectively
build structures, move objects, or even act as weapons or shields (e.g., Dis-
ney’s Big Hero 6 or Marvel’s Black Panther) have become as ubiquitous and
iconic in science fiction futurism as flying cars, holographic video conferenc-
ing, and teleportation. Yet this vision does not exist solely in fiction; since the
1990s, many researchers spanning across biology, chemistry, physics, mathemat-
ics, and computer science have contributed significant results towards realizing
versatile, scalable robotic systems. In 1991, Toffoli and Margolus [54] defined
programmable matter as a physical computing medium composed of simple, ho-
mogeneous nodes that can be (i) assembled into “lumps” of arbitrary size, (ii)
dynamically reconfigured into any regular structure that grows at most polyno-
mially, (iii) interactively controlled by user input or environmental stimuli, and
(iv) accessed in real time for observation, analysis, or modification.

The vision for programmable matter is to realize a physical substance that is
scalable, versatile, instantly reconfigurable, safe to handle, and robust to failures.
Programmable matter could be deployed in numerous domain spaces to address
a wide gamut of problems: in construction, it could be used as a self-repairing
building material or as a dynamically reconfigurable support scaffolding; in en-
vironmental science, it could be used to locate and metabolize pollutants at the
micro-scale; in biological processes, it could aid in the construction and mainte-
nance of nanoscale structures or even boost healing by artificially transporting
and applying medicine where it’s most needed; in robotics, it could be used to
sustain long-term missions in isolated or hazardous environments where it would
be difficult for a human to intervene.

There are formidable challenges to realizing programmable matter both from
the engineering and computational perspectives. In this chapter, we abstractly
consider programmable matter as a collection of simple computational entities
that must coordinate at the individual level to achieve useful behaviors at the
system level. Using the amoebot model and hybrid programmable matter model
as our computational frameworks, we will present a series of distributed algo-
rithms for programmable matter and give rigorous theoretical results regarding
their correctness and efficiency.

1.1 Related Work

When considering the various models and implementations of programmable
matter, one can differentiate between passive and active systems. In passive sys-
tems, individual units of programmable matter cannot control their own move-
ments, instead relying on their structural properties and interactions with their
environment for locomotion. They may, in some cases, have limited compu-
tational abilities to make decisions and communicate. Prominent examples of
passive systems include population protocols [2], molecular computing and tile
self-assembly models [26,40], and slime molds [7, 44].

Our focus is primarily on active systems, where the individual units can con-
trol their actions and movements to achieve some task. Examples of physical
active systems include swarm robotics [47] as well as self-reconfigurable modular
robotics [59]. These systems seek similar coordinated behaviors as those consid-
ered in the amoebot model, but use robots that often have significantly more
powerful sensing and communication abilities. Among the theoretical models of
active systems, the nubot model from molecular programming [58] and metamor-
phic robots [12, 56] have the most similarities to the amoebot model, including
their representations of space and their emphasis on simple, local computational
units. However, they include some capabilities (e.g., rigid body movements in
the nubot model) that prohibit a direct translation between the models.

The amoebot model for self-organizing particle systems (fully described in
Section 2.1) envisions programmable matter as a system of simple, homogeneous
particles that have only local communication and vision, constant-size memory,
and no global sense of direction. This model was introduced to facilitate rigorous
algorithmic research on programmable matter systems, and has since served as

the computational framework for many theoretical investigations and even one
experimental study [48].

Hybrid programmable matter (Section 6) combines the active and passive
approaches by considering a passive structure of connected tiles that can be re-
configured by a collection of active robots. When considering only the passive
tiles, this model shares many similarities with the tile self-assembly models men-
tioned before, where tiles bond to each other based on predefined “glues” (see,
e.g., [26,40]). On the other hand, the active robots in the hybrid setting are very
similar to the particles of the amoebot model, with the added capability of lift-
ing and moving tiles. When considering only the robots’ movements on a static
tile structure, hybrid programmable matter reduces to an instance of the mo-
bile agents on graphs model, where problems such as gathering/rendezvous [41],
intruder caption [6], and graph searching and exploration [13, 28] have been
studied extensively. DNA nanomachines offer a promising realization of hybrid
programmable matter, and are capable of walking on one- and two-dimensional
surfaces [35,39,57], transporting cargo [51,53], and acting as the head of a finite
automaton on an input tape [45].

1.2 Chapter Organization

In Section 2, we define the amoebot model for programmable matter, including
the rationale behind its modeling choices and a list of common model extensions.
Section 3 contains four algorithmic primitives under the amoebot model — direct
read/write communication, leader election, the spanning forest primitive, and
distributed binary counters — that are utilized by the algorithms of Sections 4
and 5. The shape formation and object coating algorithms of Section 4 are
largely deterministic, while the algorithms for compression, shortcut bridging,
and separation in Section 5 are fully stochastic. Hybrid programmable matter is
defined in Section 6, and algorithms for shape formation and shape recognition
in this hybrid setting are described in Section 7. A summary of the chapter and
an outline of future research are given in Section 8.

For clarity and brevity, we do not give any proofs of the theoretical results
in this chapter and occasionally omit algorithm details that detract from a clear
understanding of an algorithm’s main ideas. However, we cite all underlying
publications in their respective sections and encourage the interested reader to
read further.

2 The Amoebot Model

The amoebot model is an abstract computational model of programmable mat-
ter intended to enable rigorous algorithmic analysis of collective systems at the
nano-scale. Originally proposed as “amoeba-inspired self-organizing particle sys-
tems” in [25], the model was polished and formally announced as the amoebot
model in [18]. It has since undergone many updates and changes over the years

to support new settings and considerations, but has kept to the same core prin-
ciples throughout. Here, we give a complete description of the current model in
Section 2.1, provide some intuition behind its details in Section 2.2, and describe
its common extensions in Section 2.3.

2.1 Model Description

In the amoebot model, programmable matter consists of individual, homoge-
neous computational elements called particles. Any structure that a particle
system P can form is represented as a subgraph of an infinite, undirected graph
G = (V,E) where V represents all positions a particle can occupy relative to its
structure and E represents all atomic movements a particle can make. Each node
in V can be occupied by at most one particle at a time. In the geometric amoebot
model, it is further assumed that G = G∆, where G∆ is the triangular lattice3

(see Fig. 1a). Fixing the position of some particle, G∆ represents the discretiza-
tion of space relative to this particle and the possible atomic movements between
these discrete positions. This discretization can be conceptualized as a tiling of
two-dimensional space; G∆ corresponds to the hexagonal tiling (Fig. 1a).

(a) (b)

0 1
2
3
4
5

0
12

3
4 5

6
7
8
9

(c)

Fig. 1: (a) A section of the triangular lattice G∆ (black) and its dual, the hexag-
onal tiling (gray). (b) Expanded and contracted particles (black dots) on G∆
(gray lattice). Particles with a black line between their nodes are expanded. (c)
Two particles with different offsets for their port labels.

Each particle occupies either a single node in V (i.e., it is contracted) or a
pair of adjacent nodes in V (i.e., it is expanded), as in Fig. 1b. Particles move via
a series of expansions and contractions: a contracted particle can expand into
an unoccupied adjacent node to become expanded, and completes its movement
by contracting to once again occupy a single node. An expanded particle’s head
is the node it last expanded into and the other node it occupies is its tail ; a
contracted particle’s head and tail are both the single node it occupies.

Two particles occupying adjacent nodes are said to be neighbors. Neighboring
particles can coordinate their movements in a handover, which can occur in one

3 Some papers refer to G∆ as the equilateral triangular grid graph Geqt or the trian-
gular lattice Γ .

of two ways. A contracted particle P can initiate a “push” handover with an
expanded neighbor Q by expanding into a node occupied by Q, forcing it to
contract. Alternatively, an expanded particle Q can initiate a “pull” handover
with a contracted neighbor P by contracting, forcing P to expand into the node
it is vacating.

Each particle keeps a collection of ports — one for each edge incident to the
node(s) it occupies — that have unique labels from its own local perspective.
Although each particle is anonymous, lacking a unique identifier, a particle can
locally identify any given neighbor by its labeled port corresponding to the edge
between them. The particles are assumed to have a common chirality (i.e., notion
of clockwise direction), which allows each particle to label its ports in clockwise
order. However, particles do not share a coordinate system or global compass
and may have different offsets for their port labels, as in Fig. 1c.

Each particle has a constant-size local memory partitioned into internal mem-
ory and one addressed memory for each neighboring node. A particle can only
write into its own memory, but can read all the addressed and internal memories
of its neighbors for communication. A particle’s internal memory stores whether
it is expanded or contracted, its local port labeling (including which ports are
incident to its head versus its tail), and any other application-specific informa-
tion. Particles do not have any global information and — due to the limitation
of constant-size memory — cannot know the total number of particles in the
system nor any estimate of this value.

The system progresses through atomic actions according to the standard
Async model of computation from distributed computing (see, e.g., [36]). A
classical result under this model states that for any concurrent asynchronous ex-
ecution of atomic actions, there exists a sequential ordering of actions producing
the same end result, provided conflicts that arise in the concurrent execution
are resolved. In the amoebot model, an atomic action corresponds to the activa-
tion of a single particle. Once activated, a particle can (i) perform an arbitrary,
bounded amount of computation involving information it reads from its local
memory and its neighbors’ memories, (ii) write to its local memory, and (iii)
perform at most one expansion or contraction. Conflicts involving simultaneous
particle expansions into the same unoccupied node are assumed to be resolved
arbitrarily such that at most one particle moves to some unoccupied node at any
given time4. Thus, while in reality many particles may be active concurrently,
it suffices when analyzing algorithms under the amoebot model to consider a
sequence of activations where only one particle is active at a time. The resulting
activation sequence is assumed to be fair : for any inactive particle P at time t, P
will be activated again at some time t′ > t. An asynchronous round is complete
once every particle has been activated at least once. Unless otherwise specified,
a round refers to an asynchronous round.

4 A particle can only write into its own memory in the amoebot model’s publishing-
based communication, so no conflicts of concurrent writes to the same memory lo-
cation are possible.

2.2 Rationale

We now provide some intuition behind the amoebot model and its details. At
the highest level, we seek to answer the question: what complex, collective be-
haviors are achievable by extremely simple, restricted programmable particles?
The amoebot model was designed to restrict the capabilities of the individual
particles as much as possible in hope of developing algorithms that could be use-
ful to many implemented systems across task domains and scales. For example,
it may seem unnecessarily restrictive to a swarm robotics engineer to consider
robots with only constant-size memory, since commodity hardware often sup-
ports O(log n) or even O(n) memory, for reasonable swarm sizes n. However,
this assumption makes algorithms under the amoebot model applicable both
to swarm systems with extra memory as well as systems at the more restrictive
micro- or nano-scales. Moreover, the resulting systems can be arbitrarily scalable
to any number of units, a desirable property for programmable matter.

Communication. Restricting particle communication and vision to immediate
neighbors captures the local nature of unit interactions in programmable matter.
The amoebot model’s communication scheme is a publishing-based version of
standard message passing protocols in the Async model. If a particle P wants
to send some information x to its neighbor Q, it writes x to its addressed memory
facing Q. Particle P must wait for Q to activate, read x, and acknowledge its
receipt before P can know the information was communicated. Situations where
multiple neighbors try to send information to the same particle concurrently
must be resolved by the recipient. (See Section 2.3 for a simpler variant of this
publishing-based communication model).

Chirality. The chirality assumption, which states that particles have a common
sense of clockwise direction, is reasonable in many settings. Having a shared chi-
rality is essentially equivalent to the system’s ability to break spatial symmetry,
such as distinguishing between “up” and “down”. This is usually fairly simple to
decide; for example, if a particle system were deployed in any medium subject to
gravity, the system’s top and bottom would be trivially distinguishable. Recent
results by Di Luna et al. suggest that this assumption may not be necessary for
all applications [23,24]. We will discuss this further at the end of Section 3.1.

Connectivity. A particle system is connected if the subgraph of G induced by the
occupied nodes of V is also connected. This notion does not imply any particular
kind of connectivity in a physical programmable matter system; connections
could be physical bonds, points of contact between neighboring units, or even
wireless communication links. Although the amoebot model does not require
that a system remains connected, this is often a desirable property that its
algorithms maintain. If a particle system disconnects, there is little hope the
resulting components could ever reconnect. Since each particle can only see and
communicate with its immediate neighbors and does not have a global compass,
disconnected components have no way of knowing their relative positions and
thus cannot intentionally move toward one another to reconnect.

Space. To aid system connectivity, we chose the triangular lattice G∆ to repre-
sent space in the geometric amoebot model. In the other regular two-dimensional
lattices (square and hexagonal), particles are often forced to momentarily dis-
connect from the rest of the system even to perform moves as simple as shifting
“around” another particle by one position (see Fig. 2).

(a) (b) (c)

Fig. 2: Illustration of a particle moving “around” a neighboring particle to get
to the next position on the surface, depicted as a gray star, on the (a) triangular
lattice G∆, (b) square lattice, and (c) hexagonal lattice.

Movement. Modeling movements as expansions, contractions, and handovers
also has roots in connectivity. Splitting a particle’s movement from one node
to another into an expansion and a contraction can be thought of as a look-
ahead mechanism in which the particle reserves a space and examines its new
surroundings before deciding whether or not to go through with the movement.
This is vaguely similar to human walking, where we put one foot forward before
completely shifting our weight to take another step. By looking ahead, a particle
can determine whether its move might break system connectivity before commit-
ting to it. Handovers, as described in Section 2.1, allow the system to maintain
connectivity while moving. These movements were not simply included for con-
venience; there are tasks — such as moving through a static tunnel of width 1 —
which are impossible without handovers if connectivity must also be maintained
at all times.

2.3 Extensions

Many papers on the amoebot model utilize techniques and assumptions that
extend the core model described in Section 2.1. These extensions can be thought
of as modules which combine and repackage core model features into useful,
higher-level functionalities.

Leader Particle. Some algorithms under the amoebot model assume the exis-
tence of a unique leader particle (or seed) at initialization which can be used to
coordinate the rest of the system. This assumption is reasonable, since the leader
election algorithm in [16] can be used as a preprocessing step for obtaining this

leader particle (see Section 3.1 for details). Notably, a leader can impose its label-
ing scheme on all other particles in the system to establish a global compass. In
the other direction, if the system establishes a global compass without a leader,
it becomes trivial to solve leader election (e.g., “elect the south-most, west-most
particle”). Thus, any algorithm under the amoebot model which hopes to run in
sublinear time — faster than the leader election algorithm of [16], which matches
the worst-case lower bound — must restrict itself only to local compasses.

Static Objects. An object is a finite, connected, static set of nodes O ⊂ V . We
model objects as a collection of contracted particles in a special object state
which do not move, communicate, or perform any computation throughout the
execution of an algorithm. These object particles simply represent some fixed
surface or entity in space and are usually not considered members of the particle
system. For example, the coating algorithm in Section 4.3 assumes the existence
of an object to be coated, and the stochastic algorithm for shortcut bridging in
Section 5.2 considers two objects that the particle system must bridge between.
Particles can differentiate between object and non-object particles.

Node Differentiation. It is sometimes useful to consider physical spaces that have
heterogeneous properties, such as a marsh with both land and water locations
or a tree-lined path with some parts exposed to sunlight and others in shade.
Node differentiation models these differences by considering an assignment Φ :
V → {1, . . . , k} that maps each node of the graph G to one of k types, where
k is a constant. A contracted particle occupying a node u ∈ V can read Φ(u),
but cannot alter it. Analogously, an expanded particle occupying adjacent nodes
u, v ∈ V can read but not write Φ(u) and Φ(v). This assignment Φ need not be
static, but any dynamics controlling its evolution should reflect changes in the
environment and not the actions of the particle system. This extension should
not be used to encode global information for the particles to utilize.

Token Passing. A token is a constant-size message that can be passed from
particle to particle. More specifically, a particle P can pass a token t to a neighbor
Q by publishing t to its addressed memory facing Q, wait for Q to read, copy,
and acknowledge t, and then delete t from its own memory. Due to the constant-
size memory constraint of the amoebot model, each particle can hold only a
constant number of tokens at once. Rules on whether tokens must be passed in
a pipelined fashion, merge together, or interact in more complex ways may vary
by each algorithm’s need.

Many algorithms under the amoebot model use token passing to relay in-
formation beyond a particle’s immediate neighborhood. For example, the leader
election algorithm in Section 3.1 uses tokens extensively to facilitate communica-
tion and competition between candidates which are often far from one another.
Although token passing often makes algorithms more complex, especially when
tokens of different protocols interact, its flexibility and direct compatibility with
the model make it a viable tool for many applications.

Direct Write Communication. In the publishing-based communication scheme of
the amoebot model, a particle only has write access to its own memory, but has
read access to all addressed and internal memories of its neighbors. As described
in Section 2.2, if a particle P wants to send some information x to its neighbor
Q, a multi-step process of publishing and acknowledging x is initiated. However,
this can greatly complicate the presentation of algorithms that rely heavily on
writes (e.g., any algorithm that uses token passing), as every write is split over
multiple particle activations that must be locally synchronized.

One could greatly simplify communication descriptions by employing a vari-
ant of the publishing-based communication model. In the direct write communi-
cation model, a particle can do the following in one activation: (i) perform an
arbitrary, bounded amount of computation involving information it reads from
its local memory and its neighbors’ memories, (ii) write to its local memory,
(iii) directly write updates to at most one neighbor’s memory, and (iv) perform
at most one expansion or contraction. However, in the asynchronous setting of
the amoebot model, this direct write communication allows for write conflicts,
where multiple particles concurrently attempt to write to the internal memory
of a common neighbor. These conflicts are assumed to be resolved arbitrarily
such that each particle is involved in at most one write at any given time (i.e.,
at any given time, either a particle P is writing to a neighbor, a neighbor is writ-
ing to P , or neither). This direct write communication model can be faithfully
emulated by the publishing-based communication scheme of the amoebot model
via a simple emulation primitive, described fully in [17].

Random Number Generation. It is often assumed that each particle has access
to random bits with which it can generate random values. However, due to the
constant-size memory constraint of the core model, each particle can only hold a
constant number of random bits and thus can only store constant precision ran-
dom values. It is left to the algorithm designer to ensure that constant precision
is sufficient for their application; see [1, 11] for examples of such arguments.

Agent Emulation. It can be useful for a particle to run multiple instances of
an algorithm at once, especially in settings where it needs to participate in
different phases of an algorithm concurrently. In the leader election algorithm in
Section 3.1, for example, a particle executes up to three instances concurrently
(one per boundary it is incident to). To accommodate this, a single particle can
emulate up to a constant number of agents, each with its own memory, running
its own instance of a given algorithm. This respects the constant-size memory
constraint as each algorithm instance requires only constant memory and each
particle emulates at most a constant number of agents.

3 Algorithmic Primitives for the Amoebot Model

Several algorithmic primitives exist under the amoebot model, acting as reusable
building blocks for the algorithms of Sections 4 and 5. These include leader

election (Section 3.1), which is used by other algorithms as a black box for
obtaining a unique leader particle, the spanning forest primitive (Section 3.2),
which is used to locally organize and move a particle system along a specified
path, and distributed binary counters (Section 3.3), which enable n particles to
collectively emulate a binary counter storing unsigned values up to 2n − 1.

3.1 Leader Election

To date, there have been two approaches to the classical problem of leader elec-
tion under the amoebot model: the token-based approach by Derakhshandeh and
Daymude et al. [16, 22], and the erosion-based approach by Di Luna et al. [23].
We will focus primarily on the algorithm in [16], which simplifies and extends the
algorithm and analysis of [22] to a fully local, distributed, asynchronous setting.
At a glance, the algorithm in [16] elects a leader in O(L) asynchronous rounds
with high probability5, where L is the length of the outer boundary of the system
and w.h.p. applies to both correctness and runtime. A brief comparison to the
erosion-based approach is made at the end of this section.

Problem Description An algorithm is said to solve the leader election problem
if for any connected particle system of initially contracted particles, eventually a
single particle irreversibly declares itself the leader (e.g., by setting a dedicated
bit in its memory) and no other particle ever declares itself to be the leader.
The running time of a leader election algorithm is defined to be the number of
asynchronous rounds until a leader is declared. The algorithm is not required to
terminate for particles other than the leader, though a leader could broadcast
its existence to the rest of the system to trigger termination, if desired.

Algorithm We begin with a high-level overview of the algorithm’s six phases.
These phases are not strictly synchronized among each other, i.e., at any point
in time, different parts of the particle system may execute different phases. Fur-
thermore, a particle can be involved in the execution of multiple phases at the
same time. The first phase is boundary setup. In this phase, each particle lo-
cally checks whether it is part of a boundary of the particle system. Only the
particles on a boundary participate in the leader election. Particles occupying
a common boundary organize themselves into a directed cycle. The remaining
phases operate on each boundary independently. In the segment setup phase, the
boundaries are divided into segments. Each particle flips a fair coin: particles that
flip heads become candidates and compete for leadership whereas particles that
flip tails become non-candidates and assist the candidates in their competition.
A segment consists of a candidate and all subsequent non-candidates along the
boundary up to the next candidate. The identifier setup phase assigns a random
identifier to each candidate. The identifier of a candidate is stored distribut-
edly among the particles of its segment. In the identifier comparison phase, the

5 An event occurs with high probability (w.h.p.) if the probability of success is at least
1− 1/nc, where c > 0 is a constant; in our setting, n is the number of particles.

candidates compete for leadership by comparing their identifiers using a token
passing scheme. Whenever a candidate sees an identifier higher than its own, it
revokes its candidacy. Whenever a candidate sees its own identifier, the solitude
verification phase is triggered. In this phase, the candidate checks whether it is
the last remaining candidate on the boundary. If so, it initiates the boundary
identification phase to check if it occupies the unique outer boundary of the
system. In that case, it becomes the leader; otherwise, it revokes its candidacy.

Boundary Setup. The boundary setup phase organizes the particle system into a
set of boundaries, as in Fig. 3a. Let A be the set of nodes in G∆ that are occupied
by particles, and consider the graph G∆|V \A induced by the unoccupied nodes in
G∆. An empty region is a maximal connected component of G∆|V \A. Let N(R)
be the neighborhood of an empty region R in G∆; that is, N(R) = {u ∈ V \R :
∃v ∈ R such that (u, v) ∈ E}. Note that by definition, all nodes in N(R) are
occupied by particles. We refer to N(R) as the boundary of the particle system
corresponding to R. Since A corresponds to a finite set of particles, exactly one
empty region has infinite size while any others have finite size. The boundary
corresponding to the infinite empty region is the unique outer boundary, and any
boundary corresponding to a finite empty region is an inner boundary.

(a) (b)

Fig. 3: (a) Boundaries of a particle system. The solid line represents the unique
outer boundary and the dashed lines represent the inner boundaries. (b) Agents
(black dots) of particles (gray circles) organized into directed cycles along the
boundaries of (a).

Next, the particles of each boundary organize into a directed cycle. Upon its
first activation, each particle determines its place in these cycles using only local
information as follows. If P has no neighbors, then since the particle system is
connected, P must be the only particle. So P immediately declares itself the
leader and terminates. If P is surrounded (i.e., it has six neighbors), P is not
part of any boundary and simply terminates.

Otherwise, the neighborhood of P must contain at least one occupied and one
unoccupied node. For each maximal, connected sequence of unoccupied nodes

S in the neighborhood of P (of which there can be at most three; see Fig. 4),
let P act as a distinct agent aS that independently executes the remainder of
the leader election algorithm. This ensures that the leader election algorithm
runs on each boundary independently, since P cannot locally decide which such
sequences belong to which boundary. Each agent aS chooses the particle im-
mediately clockwise (resp., counterclockwise) of S to be its successor (resp.,
predecessor).

Fig. 4: Possible results (up to rotation) of the boundary setup phase depending
on the neighborhood of a particle. For each boundary, the depicted arrow starts
at the particle’s predecessor and ends at its successor.

Fig. 4 shows all possible neighborhoods of a particle (up to rotation) and the
corresponding predecessor and successor assignments of its agents. These assign-
ments organize the set of all agents into disjoint cycles spanning the boundaries
of the particle system (see Fig. 3b). It is possible that a particle can occur up to
three times on the same boundary as different agents. While this property can
be ignored for most of the remaining phases, it will remain a cause for special
consideration in the solitude verification phase.

Segment Setup. All remaining phases (including this one) execute exclusively
on each boundary independently. Therefore, we only consider a single boundary
for the remainder of the algorithm description. The segment setup phase divides
the boundary into disjoint “segments” as follows. Each agent flips a fair coin;
those that flip heads become candidates and those that flip tails become non-

candidates. In the following phases, candidates compete for leadership while non-
candidates assist this competition. A segment is a maximal sequence of agents
(a1, a2, . . . , ak) such that a1 is a candidate, ai is a non-candidate for i > 1,
and ai is the successor of ai−1 for i > 1. We refer to the segment starting at a
candidate c as the segment of c (denoted c.seg) and denote its length as |c.seg|. In
the following phases, each candidate uses its segment as a distributed memory.

Identifier Setup. After the segments have been set up, each candidate generates
a random identifier for use in the competition of the next phase by assigning
a random digit to each agent in its segment. Note that the term identifier is
slightly misleading in that two distinct candidates can have the same identifier.

To generate its random identifier c.id, a candidate c sends a token (recall
token passing from Section 2.3) along its segment in the direction of the bound-
ary. As the token traverses the segment, it assigns a value chosen uniformly at
random from {0, 1} to each visited agent6. The resulting identifier is a binary
number consisting of |c.seg| bits where c holds the most significant bit and the
last agent of c.seg holds the least significant bit.

After generating c.id, each candidate c creates a copy of c.id that is stored
in reverse digit order in its segment. This copy is used in the next phase to
compare against the identifiers of other candidates. The token that generated
c.id is reused in creating the reversed copy as follows. It first reads the digit of
the last agent of the segment c.seg. It is then passed to the beginning of c.seg (to
candidate c) and stores a copy of that digit. It then reads the digit of c and is
passed back to the end of the segment where it stores a copy of that digit. This
continues in a similar fashion with the second to last and second agent and so
on until c.id is completely copied. Finally, the token is passed to c to signal the
end of this identifier setup phase.

Identifier Comparison. During the identifier comparison phase, the candidate
agents use their identifiers to compete with each other. When comparing identi-
fiers of different lengths, longer identifiers are defined to be higher than shorter
ones; otherwise, the identifiers are compared directly. A candidate with the high-
est identifier eventually progresses to the solitude verification phase, described
in the next section, while any candidate with a lower identifier withdraws its
candidacy. To achieve the comparison, the non-reversed copies of the identifiers
remain stored in their respective segments while the reversed copies move back-
wards along the boundary as a sequence of tokens. More specifically, a digit
token is created for each digit of a reversed identifier. A digit token created by
the last agent of a segment is marked as a delimiter token. We define the token
sequence of a candidate c as the sequence of digit tokens created by the agents
in c.seg. Once created, digit tokens traverse the boundary against the direction
of the cycle spanning it. Each agent is allowed to hold at most two tokens at a
time, and can forward at most one token per activation. Tokens are not allowed

6 In [16], the digits are chosen uniformly at random from [0, r − 1] where r is a fixed
constant. The resulting identifiers are numbers with radix r.

to overtake each other. Furthermore, an agent can only receive a token after it
creates its own digit token. This ensures that token sequences of distinct candi-
dates remain separated and the tokens within a token sequence maintain their
relative order along the boundary.

We give a high level description of the token passing scheme for identifier
comparison, illustrated in Fig. 5, using two successive candidates c and c′. Here,
the token sequence of c′ is compared with c.id. Initially, agents are active and
tokens are inactive, as in Fig. 5a. Whenever a token is forwarded by a candidate
into a new segment, the token becomes active, as in Fig. 5b. When an active agent
receives an active token, they match, storing the result of their digit comparison
(<, >, or =) in the agent and both becoming inactive (Fig. 5c). A matched
(inactive) token is then simply passed on without incident until reaching c, who
reactivates it when forwarding it into the next segment (Fig. 5d).

0

0

0

0

0

0

0

c c'
1 1 1 1 10

0
0(a)

1110

c.seg

c c'
(b)

(c)

1 1 1 1 10
0

0

1110

1 1 1 1 10
0

0
c c'

1110

c c'
1 1 1 1 10

0
0

111

(d)

<

<>=

c c'
1 1 1 1 10

0
0

<

>=

11

1 1 1 1 10
0

0

1 1 1 1 10
0

0

=

>
1

c c'

c c'

1
>

>

(e)

(f)

(g)

c'.seg

0

1

Fig. 5: Illustration of identifier comparison between c.id = 0101 and c′.id = 1110.
Active elements are white while inactive elements are gray. The digit tokens are
depicted as squares, while the star depicts the special delimiter token.

The delimiter token of c′, say dc′ , eventually enters c.seg (Fig. 5d). As dc′

traverses c.seg, it sees the results of the previous digit comparisons from least
to most significant and updates its record of the overall comparison accordingly
(Fig. 5e–f). When candidate c eventually receives dc′ , it locally compares iden-
tifier lengths as follows. If c already matched with a non-delimiter token of c′,
then |c.seg| < |c′.seg| and c withdraws its candidacy. If the delimiter token dc′

already matched with some agent before c, then |c.seg| > |c′.seg| and c remains a
candidate. Finally, if c matches with dc′ (as in Fig. 5g), we have |c.seg| = |c′.seg|.

In this last case, c must use the record of the overall comparison stored in dc′

in combination with its own digit comparison with dc′ to decide the comparison
result. If c.id < c′.id, c withdraws its candidacy. If c.id > c′.id, c remains a
candidate. Finally, if c.id = c′.id, c may have just compared against its own
identifier and thus initiates the solitude verification phase to determine if it is
the only remaining candidate on the boundary.

As an aside, candidates who withdraw candidacy still reactivate inactive
tokens when forwarding them. The delimiter token also resets inactive agents as
it passes over them, preparing them for future identifier comparisons (Fig. 5e–g).

Solitude Verification. The goal of the solitude verification phase is for a can-
didate c to check whether it is the last remaining candidate on its boundary.
Solitude verification is triggered during the identifier comparison phase when-
ever a candidate detects equality between its own identifier and the identifier
of a token sequence that traversed its segment. Such a token sequence can ei-
ther be a candidate’s own or that of another candidate with the same identifier.
Once the solitude verification phase is started, it runs in parallel to the identifier
comparison phase and does not interfere with it.

A necessary (but insufficient) condition for candidate c to be the only re-
maining candidate on its boundary is if the next candidate along the boundary
occupies the same node as c. The following algorithm checks this condition. Treat
the directed edges of the boundary cycles as vectors in the two-dimensional Eu-
clidean plane. The next candidate along the boundary, say c′, occupies the same
node as c if and only if the sum of the vectors corresponding to boundary edges
from c to c′ is 0. To decide if this is the case in a local manner, c defines a
local two-dimensional coordinate system (e.g., as in Fig. 6) and uses a token
passing scheme to check whether the x-components of the vectors sum to 0. An
analogous scheme is used for the y-components, which runs in parallel.

First, c sends an activation token in the direction of the cycle towards the next
candidate. Whenever the token moves in the positive (resp., negative) direction of
the locally defined x-axis, it creates a positive token (resp., negative token). These
tokens are sent back towards c. Positive and negative tokens move independently
of each other, but cannot overtake tokens of the same type. Once these tokens
either reach c or cannot move any closer to c, they become settled. Note that once
all positive (or negative) tokens are settled, they form a consecutive sequence
whose length corresponds to the number of tokens, as in Fig. 6a–c.

When the activation token reaches the next candidate, it reverses its move-
ment back towards c, staying behind any positive or negative tokens that have

-
+

-
+

- -

-
+

-
+

-

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

-
+

c

x

y

c

x

y

c

+x+y
(0,1)

(1,0)
(-1,0)

(-1,0)
(0,1)

(0,-1)

(1,-1) (1,-1) (1,-1) (1,-1)

(-1,1)(-1,1)

(-1,1)

c

x

y

c'

c''

(a)

(b)

(c)

Fig. 6: The local vector construction used in solitude verification. The logical
positions of the positive and negative tokens after they have settled are shown
on the right, for the situation where the only remaining candidate(s) is/are (a)
c, (b) c and c′, and (c) c and c′′.

not settled. Once they have settled, deciding whether the vectors sum to 0 can
be done in a local manner: the vectors from c to the next candidate sum to 0
if and only if the length of the positive and negative token sequences are equal;
i.e., if the last settled tokens in these sequences are held by the same agent. For
example, this is the case in Fig. 6a–b, but not in Fig. 6c. Thus, the activation to-
ken simply observes whether or not this is the case and then moves back towards
c to report the result. On the way, it deletes all positive and negative tokens.

However, as hinted before, this is not sufficient to decide whether c is the
last remaining candidate on the boundary. For agents belonging to the same
particle on the same boundary, as with c and c′ in Fig. 6b, the vectors will sum
to 0 despite there being at least two agents remaining. To handle this case, each
particle assigns a locally unique identifier from {1, 2, 3} to each of its agents in
an arbitrary way. When the activation token reaches the next candidate, it reads
its agent identifier and carries this information back to c. It is not hard to see
that c is the last remaining candidate on the boundary if and only if the vectors
sum to 0 and the agent identifier stored in the activation token equals the agent
identifier of c.

Finally, we address the interaction between the solitude verification and iden-
tifier comparison phases. If solitude verification is triggered for a candidate c
while c is still performing a previously triggered execution of solitude verification,
it ignores this trigger and simply continues with the already ongoing execution.
Candidate c may also be eliminated by the identifier comparison phase while it
is performing solitude verification. In this case, c waits for the ongoing solitude
verification to finish and only then withdraws its candidacy.

Boundary Identification. Once a candidate c determines that it is the only re-
maining candidate on its boundary, it initiates the boundary identification phase
to check if it lies on the unique outer boundary. If so, the particle acting as c

declares itself the leader; otherwise, c revokes its candidacy. This phase uses
the fact that, due to the boundary setup phase, the outer boundary is oriented
clockwise while any inner boundary is oriented counterclockwise (see Fig. 3b).

To distinguish between clockwise and counterclockwise oriented boundaries,
a candidate c sends a token along its boundary that sums the angles of the turns
it takes according to Fig. 7, storing the results in a counter α. When the token
returns to c, there are two cases: α = 360◦ for the unique outer boundary, and
α = −360◦ for any inner boundary. We encode α as k ∈ Z such that α = k · 60◦.
It is sufficient to store k modulo 5 so that we have k = 1 for the outer boundary
and k = 4 for an inner boundary, requiring only three bits of memory.

Fig. 7: Determining α. The incoming and outgoing arrows represent the direc-
tions the token enters and leaves an agent, respectively, up to rotation.

Analysis We now briefly discuss the correctness and runtime of the leader
election algorithm, stating the main results.

Correctness. Recall that for a leader election algorithm to be correct, a single
particle must irreversibly declare itself the leader and no other particle can ever
do so. The boundary identification phase ensures that no candidate on an inner
boundary can ever declare itself the leader, so the analysis focuses only on the
outer boundary. For a single candidate agent c∗ on the outer boundary to become
the leader, it must have the highest identifier on the boundary; i.e., c∗.id > c.id
for every other candidate c 6= c∗ on the outer boundary. The analysis upper
bounds the probability of another candidate having the same highest identifier
by an inverse polynomial in n, the number of particles in the system. Barring this
event, a unique candidate c∗ with the highest identifier emerges. It eventually
compares its own identifier with itself, triggering solitude verification. When
solitude verification succeeds, boundary identification will indicate that c∗ is on
the unique outer boundary. Thus, we can state the following result.

Theorem 1. The algorithm correctly solves the leader election problem, w.h.p.

Runtime. The first two phases of the algorithm (boundary setup and segment
setup) are performed by each particle in their first activation, and thus are
completed in the first round. The identifier setup phase takes O(`2) rounds for
a segment of length `, and the length of a segment on the outer boundary is
O(log n), w.h.p. Combining these results, the identifier setup phase completes

for all candidates on the outer boundary in O(log2 n) rounds. Token sequences of
the identifier comparison phase are then shown to traverse the outer boundary
in O(L) rounds, where L is the number of agents on the outer boundary. By a
similar argument, the solitude verification phase is shown to take O(`) rounds,
where ` is the number of agents between the current and next candidates. Finally,
the boundary identification phase on the outer boundary it proven to take O(L)
rounds. Therefore, all together, we obtain the following.

Theorem 2. The algorithm solves the leader election problem in O(L) = O(n)
rounds, w.h.p., where L is the number of agents on the outer boundary and n is
the number of particles in the system.

Comparison to Leader Election by Erosion Di Luna et. al [23] take an-
other approach to leader election. At a high level, all particles originally start as
candidates. Using local rules that depend on the number and configuration of
a particle’s neighbors, a particle may decide to withdraw its candidacy. Impor-
tantly, these rules are carefully designed so that the set of candidate particles
always forms a connected component. At the end of this erosion process, there
are one to three remaining candidates in a symmetric configuration. They give a
deterministic protocol for attempting to break this symmetry, but it is possible
that it may fail and a simple coin-flipping scheme must be used instead.

In comparison to the token-based algorithm described above, the erosion-
based algorithm does not need long-range communication in the form of token
passing, nor does it require that the system has a common chirality (i.e., notion
of clockwise direction). However, it cannot handle particle systems which contain
empty regions (“holes”), and was not shown to be extensible to situations where
the particle system is moving, as is shown for the token-based algorithm in [21]
(see Section 4.3 for more details). Their algorithm achieves the same runtime
bound of O(n) rounds w.h.p., where n is the number of particles in the system.

3.2 Spanning Forest Primitive

Without a global compass or shared coordinate system, particles of a particle
system must use some local mechanisms to coordinate their movements. Many
algorithms under the amoebot model solve this problem using the spanning for-
est primitive, originally introduced in [22]. This primitive organizes the particle
system into one or more “trees”, each of which is composed of follower particles
following a single root particle. The root is responsible for directing the move-
ment of its tree; the followers simply perform a follow-the-leader protocol to trail
along behind the root. For simplicity, we will present this primitive with respect
to a single spanning tree; in general, this primitive executes on each tree of the
spanning forest concurrently and independently.

Problem Description Consider an initially connected particle system P of
contracted, idle particles, a designated root particle R, and a (simple) path

L ⊂ G∆ beginning at the node occupied by R. We desire for the particle system
to traverse the path L exactly without becoming disconnected.

Two caveats are needed for considering this problem in practice. First, the
root particle R is not usually predetermined. A root can either arises as the
result of some local mechanism (e.g., “if adjacent to an object, become a root”)
or can be elected using leader election (Section 3.1) as a subprimitive. Second,
L is usually not given explicitly; it is more often the path the root particle R
traverses as it executes some local algorithm. Nevertheless, for this standalone
presentation of the primitive, we assume R and L are given.

Algorithm Particles can be in one of three states: idle, follower, or root. All
particles (except the unique root R), are initially idle. When an idle particle P is
activated, it checks if it has a follower or root neighbor Q. If so, P sets its parent
pointer P.parent← Q and becomes a follower; otherwise, P does nothing.

When a follower particle P is activated, it first checks whether it is contracted
or expanded. If P is contracted and its parent Q (pointed at by P.parent) is
expanded, P expands in a push handover with Q, forcing Q to contract. In
doing so, it may need to update P.parent so it still points to Q. Otherwise, if
P is expanded, there are two cases. First, if P has no idle neighbors and no
children — i.e., no neighbors Q such that Q.parent points to the tail of P — P
simply contracts. Otherwise, if P has a child Q that is contracted, P contracts
in a pull handover with Q, forcing Q to expand. Similar to the push handover,
P may need to update Q.parent so it still points to P .

When the root particle R is activated, it also checks whether it is contracted
or expanded. The rules for when it is expanded are the same as for followers:
if it has no idle neighbors and no children, it contracts; otherwise, if it has a
contracted child, it performs a pull handover. If R is contracted, on the other
hand, it checks if it has reached the end of the given path L. If so, it does nothing;
otherwise, it simply expands into the next node of L.

Example. Consider an example run of the spanning forest primitive, illustrated
in Fig. 8. All particles except the root R are initially idle (Fig. 8a). Particle P1

has the root R as a neighbor and becomes a follower, setting P1.parent ← R,
while R expands into the next node of the path L (Fig. 8b). Eventually, all idle
particles become followers; a handover occurs between R and P1 (Fig. 8c). Root
R moves into the final node of L via expansions and handovers that propagate
out through the rest of the tree (Fig. 8d–8f). Eventually, all particles become
contracted, and L has been traversed by the particle system (Fig. 8g).

Root Swaps. One caveat is necessary: it is possible that as R traverses L, it may
be blocked by another part of the particle system, as in Fig. 9a. In this case, it
will not be able to expand into the next node of L since this node is occupied by
another particle Q. Instead, R performs a root swap with Q (if Q is contracted),
in which R transfers the contents of its memory to Q, promotes Q to become
the new root, demotes itself to become a follower, and sets R.parent ← Q (see

R

P1 P2P3

P4

(a)

R

P1 P2P3

P4

(b)

R

P1 P2P3

P4

(c)

R
P1

P2P3

P4

(d)

R
P1

P2P3

P4

(e)

RP1
P2

P3

P4

(f)

RP1P2
P3

P4

(g)

Fig. 8: Example of the spanning forest primitive. The root R is shown as a black
dot with a black circle, and the path L it follows is shown in gray. The black
arcs point from a follower’s head to its parent, and expanded particles have a
black line connecting their head and tail.

Fig. 9b). Note that this does not disrupt the tree structure of the particle system,
even if Q was idle or has idle neighbors.

R

Q

(a)

R

Q

(b)

Fig. 9: Example of using a root swap to overcome a blocked path.

Analysis We now state the main correctness and runtime results for the span-
ning forest primitive.

Correctness. Two properties must hold for the particle system P to correctly
traverse path L: (i) P always makes eventual progress along L until L has
been entirely traversed, and (ii) P never becomes disconnected. These are the
liveness and safety conditions for the spanning forest primitive, respectively.
Liveness depends on the root’s ability to continue expanding and performing
handovers along L. In [21,22], Derakhshandeh et al. prove that every expanded
particle (including the root) eventually contracts. Thus, a contracted root will
always be able to either expand into the next node of L or perform a root
swap with the particle blocking it, since this blocking particle is also guaranteed

to eventually be contracted. Safety follows more immediately. The only way P
can become disconnected is if a particle with children or idle neighbors contracts
outside a handover, breaking their connectivity to the tree. However, the protocol
explicitly disallows this, so we have the following.

Theorem 3. A particle system P following the spanning forest primitive will
correctly traverse any given simple path L.

Runtime. A dominance argument [14, 20] is used to analyze the runtime of the
spanning forest primitive. These arguments first consider a parallel execution
of an algorithm where all particles make progress in lock-step. This is often
much easier to reason about. For the spanning forest primitive, it is shown that
in O(n) parallel rounds, all n particles are the root or its followers and the
resulting tree forms a pattern of alternating expanded and contracted particles.
Once in this configuration, the tree makes exactly one node of progress along L
every 2 parallel rounds. Together, this implies that the spanning forest primitive
traverses the entire path L in O(|L|) parallel rounds.

Using careful case analysis, the concurrent, asynchronous execution of an
algorithm is then shown to always make at least as much progress per round
as its parallel counterpart. This implies that the runtime bound for the parallel
execution is an upper bound on the runtime of the asynchronous execution. For
the spanning forest primitive, this argument yields the following bound.

Theorem 4. A particle system P following the spanning forest primitive will
traverse a given path L in O(|L|) rounds, where |L| is the length of path L.

3.3 Distributed Binary Counters

Many behaviors for programmable matter are realized by efficient algorithms
under the amoebot model that only use constant-size state variables and mes-
sages. However, it can be useful in many applications to work with values that
are on the order of O(log n) or even O(n), where n is the number of particles in
the system. An example of such values appeared in leader election (Section 3.1),
where candidates generated identifiers of logarithmic length to compete for lead-
ership. Other applications could include, for example, measuring the size of an
object with a particle system in order to replicate its shape.

Due to the constant-size memory constraint of the amoebot model (Sec-
tion 2.1), individual particles cannot keep these larger values in memory by
themselves. However, with the help of a leader particle, a system of n particles
can be organized into distributed memory in the form of a distributed binary
counter that stores unsigned values up to 2n − 1 and supports increments and
decrements by one as well as zero-testing. Porter and Richa first introduced an
increment-only binary counter under the amoebot model in [42]; Daymude et
al. extended this work to support decrements and zero-tests in [15].

Problem Description Consider an initially connected particle system P of
contracted particles organized in a simple path P0, P1, . . . , Pn−1 with a leader
particle ` = P0 at its start. We desire for the particle system to self-organize into
a distributed binary counter that supports increments and decrements by one
(initiated by the leader `). Additionally, the distributed binary counter should
support reliable zero-testing, i.e., the leader ` should reliably be able to determine
whether or not the counter’s value is equal to zero.

Although the particles could move while maintaining the binary counter (e.g.,
according to the spanning forest primitive of Section 3.2), for ease of presentation
we will assume they are static. It is also assumed that the leader ` never causes
the counter to reach negative values; i.e., at any given time, ` has initiated at
least as many increments as decrements. Presumably, ` could perform a zero-test
before initiating a decrement to ensure the counter will not go negative, but for
our presentation this nonnegativity assumption will suffice.

Algorithm Each particle Pi (for 0 ≤ i < n) has a bit value Pi.bit ∈ {∅, 0, 1},
where Pi.bit = ∅ implies Pi is not part of the counter; i.e., it is beyond the most
significant bit. A final token f represents the end of the counter. If a particle Pi
holds f , the counter value is represented by the bits of each particle from the
leader ` (holding the least significant bit) up to and including Pi−1 (holding the
most significant bit). Although not necessary for increments and decrements,
utilizing f will allow the leader to zero-test the counter locally and efficiently.

The leader ` is responsible for initiating counter operations, while the other
particles carry these operations out using only local information. To increment
the counter, the leader ` simply generates an increment token c+ (assuming it was
not already holding a token). Now consider this operation from the perspective
of any particle Pi holding a c+ token, where 0 ≤ i < n. If Pi.bit = 0, Pi can
simply consume c+ and set Pi.bit ← 1. Otherwise, if Pi.bit = 1, this increment
needs to be carried over to the next most significant bit. As long as Pi+1 is not
already holding a token, Pi can forward c+ to Pi+1 and set Pi.bit← 0. Finally,
if Pi.bit = ∅, this increment has been carried over past the counter’s end, so Pi
must also be holding the final token f . In this case, Pi simply forwards f to Pi+1

and sets Pi.bit← 1.

Decrements are similar; when considering this operation from the perspective
of any particle Pi holding a c− token, where 0 ≤ i < n, the cases for Pi.bit ∈
{0, 1} are anti-symmetric to those for the increment, with two exceptions. First,
we only allow Pi to consume c− and set Pi.bit← 0 if Pi+1 is not also holding a
c−. While not necessary for the correctness of the decrement operation, this will
enable conclusive zero-testing. Second, if Pi.bit = 1 and Pi+1 is holding f , then
Pi is the most significant bit. So this decrement shrinks the counter by one bit;
thus, Pi consumes c−, takes f from Pi+1, and sets Pi.bit← ∅.

Finally, the zero-test operation: if P1 is holding a decrement token c− and
P1.bit = 1, ` cannot perform the zero-test conclusively. Otherwise, the counter
value is 0 if and only if `.bit = 0, P1 is holding the final token f , and P1 is not
holding an increment token c+.

Analysis We only present the correctness and runtime results for the distributed
binary counter primitive from [15], as these subsume those in [42].

Correctness. For the distributed binary counter primitive to be correct, it must
eventually yield the same values as a centralized counter, assuming both are given
the same sequence of operations as input. Because the algorithm ensures that
the increment and decrement tokens are processed in the same order that their
respective operations are initiated, the resulting distributed counter will correctly
process an arbitrary number of increment and decrement operations (assuming
the counter value remains in {0, 1, . . . , 2n−1}). The zero-test operation is shown
to always eventually be available (i.e., P1 is not holding a decrement token c−

or P1.bit 6= 1) and is reliable whenever it is available. Together, this yields:

Theorem 5. A particle system P running the distributed binary counter prim-
itive will maintain a distributed counter that eventually yields the same values
as a centralized counter, given the same sequence of increment, decrement, and
zero-test operations.

Runtime. The following runtime bound is proven using a careful dominance
argument (see, e.g., Section 3.2) applied to the progress of the increment and
decrement tokens in the counter.

Theorem 6. Given any nonnegative sequence of m operations, a particle system
P running the distributed binary counter primitive processes all operations in
O(m) rounds.

Applications We briefly discuss some applications of the distributed binary
counter primitive whose details are beyond the scope of this chapter. In [42],
Porter and Richa give an algorithm using the increment-only counter for matrix-
vector multiplication. For an a × b matrix (i.e., a rows and b columns), this
algorithm requires O(ab) rounds to set up and an additional O(a + b) rounds
to perform the multiplication. By performing a sequence of these matrix-vector
multiplications, an a× b matrix can be multiplied by an b× c matrix in O(ab+
c(a+ b)) rounds. Applications of these matrix multiplication algorithms to edge
detection and color transformation in image processing are described in [42].

In [15], Daymude et al. use the distributed binary counter primitive to aid
in convex hull formation, in which a particle system must seal an object using
as few particles as possible. At a very high level, a leader particle traverses the
surface of the given object, updating its estimate of the object’s convex hull as it
goes. Using its followers as a distributed binary counter, it stores the distances
from its current position to each of the six half-planes constituting the convex
hull. Once it completes its estimation, it can use these stored distances to lead
its followers along the convex hull itself, eventually sealing the object as desired.

4 Deterministic Algorithms Under the Amoebot Model

This section is devoted to the deterministic algorithms under the amoebot model.
These algorithms use the full capabilities of the amoebot model, including sev-
eral of its extensions (Section 2.3) and algorithmic primitives (Section 3). We
focus on two basic problems for programmable matter: forming a shape using all
the particles in the system, and coating an object. In basic shape formation (Sec-
tion 4.1), a follow-the-leader type protocol is used to construct regular shapes
such as lines and hexagons. In general shape formation (Section 4.2), a more
complex algorithm is given for constructing a much broader range of shapes.
Finally, in object coating (Section 4.3), an algorithm is given for coating surfaces
in one or more layers of particles as evenly as possible.

4.1 Basic Shape Formation

Shape formation is one of the most immediate and natural applications of pro-
grammable matter. A “lump” of programmable matter should be able to re-
configure into new shapes based on user input or autonomous sensing of its
environment. Moreover, the final shape should scale with the size of the initial
“lump”. In basic shape formation, a particle system self-organizes to form regu-
lar, geometric shapes. Here, we focus on lines, hexagons, and triangles; however,
the general framework can be applied to obtain other shapes as well. Line for-
mation was first investigated in [22], while hexagon and triangle formation were
introduced in [19]. Detailed versions of all three algorithms can be found in [52].

Problem Description An instance of a shape formation problem has the form
(I,G), where I is the initial configuration of the particle system and G is a set
of goal configurations. An instance is valid if (i) I and all configurations of G
are each connected, and (ii) I is composed of all contracted, idle particles and a
unique seed particle. An algorithm solves a valid instance of the shape formation
problem if, starting from initial configuration I, the algorithm terminates in a
configuration of G, after which all particles are contracted and no longer move.

The specific line formation, hexagon formation, and triangle formation prob-
lems simply define the desired set of goal configurations G as all configurations
of straight lines, (almost) regular hexagons, and (almost) regular triangles, re-
spectively. Note that, depending on the number of particles in I, the outermost
layer of a hexagon or triangle may not be complete.

Algorithm Particles can be in one of four states: idle, follower, root, and retired.
All particles are initially idle except the unique seed particle, which is always
retired. At a high level, this algorithm constructs the desired shape one particle
at a time in a snake-like fashion, starting at the seed. Thus, at any point in
time before termination, the structure of retired particles partially forms the
goal configuration.

The spanning forest primitive (Section 3.2) is used to organize the system. In
basic shape formation, root particles always traverse the structure of retired par-
ticles in a clockwise direction, trailing their followers behind them. The most re-
cent particle to retire (starting with the seed), say P , keeps a pointer P.retireDir
to the next node to be filled by a retired particle. When a contracted root Q finds
that it occupies this node (by seeing P.retireDir pointing to it), it retires, locally
calculates the next node to be filled by a retired particle, and sets Q.retireDir
to point to it. As other roots continue their traversal and their followers become
roots when they touch the surface of retired particles, eventually all particles
retire, forming the desired shape.

It remains to specify how a newly retired particle calculates the next node
to add to the structure. Recall from Section 2.1 that each particle keeps a set of
ports (one for each edge incident to the node(s) it occupies) labeled in clockwise
order. Suppose a particle P has already retired and set P.retireDir, and another
particle Q has just retired in the position referenced by P.retireDir. Let i be
the port label of Q pointing to P . For line formation, Q sets Q.retireDir ←
(i+3) mod 6; this specifies that the next node to join the line should be opposite
the direction of the existing structure, resulting in a straight line (see Fig. 10).
For hexagon formation, Q sets Q.retireDir to the label of the first port clockwise
from i that does not point to another retired particle; this causes the hexagon
to be formed in counterclockwise order (see Fig. 11).

(a) (b) (c)

(d) (e)

Fig. 10: Example of line formation with 10 particles, where the seed is depicted
as a large black circle. Followers are shown with black arcs pointing to their
parents, roots are shown with a gray circle, and retired particles are shown with
a black circle. A retired particle’s retireDir is shown as a black arrow.

(a) (b) (c)

(d) (e) (f)

Fig. 11: Example of hexagon formation with 18 particles.

Finally, for triangle formation, a two-step mechanism is used7. Particle Q
first checks the position immediately clockwise from i, say j = (i+ 1) mod 6. If
j does not point to a retired particle (as in Fig. 12c), Q is on a new side of the
triangle and sets Q.retireDir← j to grow a new layer on this side. Otherwise, if
j points to a retired particle (as in Fig. 12d), Q is simply extending an existing
layer. So it sets Q.retireDir← (j + 2) mod 6.

Analysis We now briefly motivate and state the main correctness and runtime
results for basic shape formation.

Correctness. Showing that the basic shape formation algorithms correctly form
their desired shapes can be split into guaranteeing (i) liveness; i.e., that the
particle system P makes eventual progress towards terminating in the desired
shape, and (ii) safety ; i.e., that P never disconnects. Both liveness and safety
follow from the correctness of the spanning forest primitive (Theorem 3), though
proving that the final shape is the desired one relies on inspection of the retiring
rules described above.

Theorem 7. The basic shape formation algorithms correctly solve the line for-
mation, hexagon formation, and triangle formation problems.

7 For this presentation, we use a simplified scheme that results in a triangle with the
seed at its center; the original scheme given in [19,52] is significantly more complex
and results in a triangle with the seed at one vertex.

(a) (b)

j

(c)

j

j+2

(d) (e) (f)

Fig. 12: Example of triangle formation with 18 particles. Unlike in Fig. 11, the
resulting shape in (f) is not fully regular due to the number of particles. Addition-
ally, note that (a)–(c) are the same as Fig. 11a–11c; the basic shape formation
algorithms only differ in the way retired particles set their pointers.

Runtime. In [19, 22], Derakhshandeh et al. prove runtime bounds for the basic
shape formation algorithms in terms of work, or the total number of particle
movements required for an algorithm to terminate. It is shown that the worst-
case amount of work required by any algorithm to solve any of the three basic
shape formation problems (line formation, hexagon formation, or triangle for-
mation) is Ω(n2), where n is the number of particles in the system. The basic
shape formation algorithm described above is shown to match this worst case
bound in all three cases, terminating in O(n2) work.

In his Ph.D. thesis, Strothmann uses a dominance argument (see, e.g., Sec-
tion 3.2) to prove runtime bounds for these three algorithms in terms of asyn-
chronous rounds [52]. Formally, his thesis gives the following theorem.

Theorem 8. The total number of rounds required by the basic shape formation
algorithms to solve the line formation, hexagon formation, or triangle formation
problem is O(n), where n is the number of particles in the system.

4.2 General Shape Formation

The basic shape formation algorithm of Section 4.1 has two major disadvantages
that the general shape formation algorithm of this section seeks to alleviate.
First, it can only construct simple shapes that are amenable to being built one
particle at a time along a continuous path. Second, as stated in Theorem 8, it

generally requires O(n) rounds to construct a shape of n particles, even when
the shape could be formed more efficiently. The general shape formation algo-
rithm [20,29] can form a much broader class of shapes and, assuming the particle
system is well initialized, can do so as fast as any other local-control algorithm.

Problem Description Let S be a finite set of faces in the triangular lattice
G∆. S is a shape if the faces of S are connected — i.e., there exists a path from
any face in S to any other via pairs of faces that share a side — and the number
of faces s = |S| is constant. A shape S is sequentially constructible8 if there exists
a permutation (a1, a2, . . . , as) of the faces of S such that for every 1 ≤ i ≤ s,
the subset of faces (a1, a2, . . . ai) is itself a shape Si and the face ai has a side
on the outer boundary of Si. This means that a sequentially constructible shape
can be built by adding triangular faces to the outside of an intermediate shape.

Recall from basic shape formation (Section 4.1) that a shape formation prob-
lem (I,G) defines the initial configuration I and the set of goal configurations
G. For the general shape formation problem, I forms a triangle consisting of
n contracted particles, each with a binary representation of a sequentially con-
structible shape S to form stored in memory. The set of goal configurations G
contains all transformations of S, where a transformation can be any combina-
tion of a translation, rotation by a multiple of 60◦, and isotropic scaling that
still coincides with the triangular lattice G∆ (see, e.g., Fig. 13). An algorithm
solves the general shape formation problem if, starting from I, the algorithm
terminates in a configuration of G. Note that the final configuration can contain
both expanded and contracted particles.

Fig. 13: A sequentially constructible shape consisting of 16 faces (left) and one
of its transformations (right) involving a 120◦ rotation counterclockwise and an
isotropic 2× scale-up.

8 The original publication on “universal” shape formation [20] claimed the algorithm
could construct any shape with a constant number of faces. However, Gmyr corrected
an oversight in this paper’s analysis in his thesis [29] and, as a result, the class of
shapes had to be restricted to sequentially constructible shapes.

Algorithm We present the general shape formation algorithm in several parts.
First, we describe several movement primitives that are used throughout the
algorithm. Next, we give highlights of an algorithm that transforms the initial
triangle of particles into a useful intermediate structure. Finally, we describe
the actual formation process. Our presentation prioritizes the algorithm’s main
ideas over its details, and we refer the interested reader to [20, 29] for a more
thorough description.

Movement Primitives. Several movement primitives are used throughout the
algorithm to move large sets of particles in a coordinated and efficient manner.
The first of these is chain movement, in which a “chain” of particles moves along
a simple path L without disconnecting. This is essentially the spanning forest
primitive described in Section 3.2, but the set of particles moving along L is
already organized into a simple path instead of a tree.

The remaining movement primitives operate on a set of contracted particles
that form a triangle. Four primitives are available to such triangles: expansion,
contraction, rotation, and shift. Fig. 14 depicts the first three of these primitives.
An expansion of a triangle results in an expanded triangle, which is a rhombus
composed of two triangles that share a side and are each the same size as the
original triangle. A contraction of a triangle transforms an expanded triangle
back into a triangle. Together, an expansion and contraction of a triangle rotates
a triangle by 60◦ about one of its vertices. Finally, a shift of a triangle moves all
of its particles by one node in a common direction.

Fig. 14: Expansion, contraction, and rotation of a triangle. A triangle (left) can
expand to form an expanded triangle (middle), which in turn can contract back
to a triangle (right), rotating the original triangle by 60◦.

At a high level, the triangle movement primitives are initiated by a triangle
coordinator that occupies one of the triangle’s three vertices. The coordinator
organizes the particles in each row of its triangle into particle chains that can
then be moved according to the chain movement primitive; for example, Fig. 15
depicts how the particle chains are moved in an expansion of a triangle. The
coordinator initiates and completes these chain movements using a token passing
scheme whose details we omit.

Reaching the Intermediate Structure. The first step of the general shape forma-
tion algorithm is to reconfigure the particle system from its initial triangle shape

C C

Fig. 15: A counterclockwise expansion of a triangle. The coordinator C is located
at the top vertex of the triangle. The rows of the triangle expand as indepen-
dently moving particle chains along the paths shown as dashed arrows.

to the intermediate structure depicted in Fig. 16. This intermediate structure
is composed of ∆ equilateral triangles of side length ` arranged in a line and
a remainder composed of too few particles to form an additional triangle. All
particles in the intermediate structure should be contracted.

Fig. 16: The intermediate structure for general shape formation. The triangles
(dark gray) form a straight line, and the remainder (light gray) is not large
enough to form another triangle.

The side length ` must be chosen carefully so that the resulting number of
triangles ∆ in the intermediate structure is sufficient to construct the desired
shape S. More specifically, ∆ should satisfy (3/4)s+1 ≤ ∆ ≤ s−3, where s = |S|
is the number of faces in S; the choice of these particular bounds is explained
in [29]. If L is the side length of the initial triangle of all n particles, then ` is
chosen to be ` = dL/bc ·

√
sce, where c < 1 is a constant. It is shown in [29]

that there is a c which yields the desired bounds on ∆, assuming s and L are
sufficiently large.

To form this intermediate structure, the particle system first performs leader
election (Section 3.1) to elect a unique leader particle on the boundary of the
initial triangle. The leader then uses a token to transfer its leadership to a particle
at one of the triangle’s vertices. Next, the particle system determines the value of
`. However, since ` = Ω(

√
n), a single particle cannot keep ` in its constant-size

memory. So the leader initiates the following token passing scheme to store `

in a distributed fashion over multiple particles. The leader generates a counter
token and sends it down one of the initial triangle’s sides. The counter token
stores the number of steps it has taken modulo bc ·

√
sc, which is a constant since

c and s are. Whenever the token’s count is 0 (starting at the leader), a marker
token is generated that moves back towards the leader without overtaking other
marker tokens. When the counter token is consumed by the particle at the end
of the triangle’s side, exactly ` marker tokens will have been generated. Thus,
when all marker tokens have moved back towards the leader as far as possible —
which can be detected by the leader using a process similar to “settling” in the
solitude verification phase of leader election (Section 3.1) — exactly ` particles,
starting with the leader, will be holding marker tokens.

Using `, the leader coordinates a recursive process to form the intermediate
structure. The process first splits the current triangle into a smaller triangle and
an isosceles trapezoid with legs of length ` (see Fig. 17). The trapezoid imme-
diately becomes part of the intermediate structure, while the smaller triangle
must be rotated, shifted twice, and rotated again to be placed in line with the
next part of the intermediate structure. This process then recurs on the smaller
triangle until a triangle with side length at most ` is moved, completing the
intermediate structure.

Fig. 17: Constructing the intermediate structure. The parts shown in dark gray
form the intermediate structure, while the triangles that are moved are shown
in light gray. The dashed arrows show these triangle movements. For example,
the leftmost triangle is rotated 60◦ about the marked vertex, shifted once right
and once down-right, and then rotated 120◦ about the next marked vertex.

Forming the Final Shape. To form the desired shape S, the leader coordinates a
process that sequentially adds triangles from the intermediate structure to the
outside of the shape under construction. In [29], Gmyr first describes a “simple
algorithm” which captures the main ideas of the general shape formation algo-
rithm. However, there are three issues the simple algorithm does not address.
First, faces of S have overlapping edges while triangles formed by particles do
not, since each node of G∆ can be occupied by at most one particle. Thus, realiz-
ing a shape may require pruning triangles to different side lengths (as in Fig. 18)
and reincorporating the pruned particles elsewhere. Second, the remainder of
particles in the intermediate structure that did not form a complete triangle
must somehow be incorporated into the final shape. Finally, the algorithm for
constructing the intermediate structure constructs at most s − 3 triangles, but
the desired shape S has s faces. Thus, some expanded triangles need to make up
for the missing triangles. We will only present the simple algorithm for general
shape formation, and refer the interested reader to [29] for the full algorithm.

Fig. 18: A shape composed of six faces with overlapping edges (left) and one
possible realization requiring triangles of three different side lengths (right).

In the simplified setting, suppose that the particles pruned to create smaller
triangles do not need to be reincorporated and that the intermediate structure
consists of exactly s triangles without a remainder. The algorithm constructs a
scaled representation of the desired shape S, where each face has side length `.

The leader first computes a permutation (a1, a2, . . . , as) of the faces of S
such that for every 1 ≤ i ≤ s, the subset of faces (a1, a2, . . . ai) is itself a
connected shape Si and the face ai has a side on the outer boundary of Si. Such
a permutation is guaranteed to exist since S is sequentially constructible, and
the leader can compute it since s is a constant.

The triangles of the intermediate structure are then mapped to the faces in
the permutation (a1, a2, . . . , as). If needed, a triangle can be pruned by one or
two rows of particles; the pruned rows are moved out of the way using chain
movements. The triangles of the intermediate structure are then added to the
outer boundary of the shape in the order defined by the permutation using tri-
angle rotations and shifts. If the intermediate structure or pruned rows obstruct
the placement of a triangle, they are simply moved out of the way.

Analysis As described earlier, the intermediate structure with a desired number
of triangles is constructed correctly, assuming the number of faces s in the goal
shape and the number of particles in the system n are sufficiently large. It is
shown in [20,29] that this intermediate construction completes in O(

√
n) rounds,

w.h.p. The w.h.p. qualifier is inherited from leader election (Section 3.1).
A triangle can be moved from the intermediate structure to its goal position

in the final shape using only a constant number of triangle rotations and shifts,
each of which requires O(`) rounds, where ` = O(

√
n) is the side length of the

triangle. The number of rows pruned from triangles is constant, and each has
length O(`) = O(

√
n). These pruned rows are moved out of the way a distance

O(
√
n) at most a constant number of times, so moving the pruned rows requires

O(
√
n) rounds in total, by Theorem 4. Therefore, all together, the following

runtime bound is obtained.

Theorem 9. The general shape formation algorithm constructs any sequentially
constructible shape in O(

√
n) rounds, w.h.p.

We conclude with the following theorem, which shows that the general shape
formation algorithm achieves the optimal bound.

Theorem 10. Any local-control algorithm for forming a non-triangular shape
S requires Ω(

√
n) rounds in the worst case.

4.3 Object Coating

Object coating is another natural application of programmable matter. For ex-
ample, one can imagine a particle system coating remote parts of a bridge to
identify stress points, or coating a vehicle as a layer of smart paint. Instead of
developing a class of coating algorithms that each coats a specific object, a more
elegant approach might seek one general algorithm that dynamically adapts to
any given object. We present such an algorithm in this section. The universal
coating algorithm was defined and proven to be correct in [21], and its runtime
analysis and proofs of worst-case optimality appeared in [14].

Problem Description We begin with some terminology. Layer i of an object
O is the set of unoccupied nodes in G∆ whose shortest path to O has length i.
Let Bi denote the number of nodes in layer i. An object O has a tunnel of width
k if the subgraph of G∆ induced by the non-object nodes is not k-connected; for
example, Fig. 19 depicts an object with a tunnel of width 1.

An instance of the object coating problem has the form (P, O), where P
is a system of n particles and O is a static object to be coated. An instance
is valid if: (i) all particles in P are initially contracted and in an idle state,
(ii) the nodes occupied by particles of P and the object O induce a connected
subgraph of G∆, (iii) O does not contain holes, and (iv) O does not contain any
tunnels of width 2(dn/B1e+ 1). Coating an object with narrow tunnels requires
technical mechanisms that complicate the protocol without contributing to the

main idea of coating, so these types of objects are not considered. An algorithm
solves a valid instance (P, O) of the object coating problem if it terminates in
a configuration where all particles of P are as close to the object O as possible,
after which no particle ever moves or changes state. Intuitively, this means that
P coats O as evenly as possible.

Fig. 19: An object with a tunnel of width 1.

Algorithm The universal coating algorithm is composed of several algorithmic
primitives that run concurrently without any underlying synchronization. The
first of these is the spanning forest primitive described in Section 3.2, which
orients the particles towards the object. The complaint-based coating primitive
is responsible for coating layer 1 of the object (also called the surface layer). The
node-based leader election primitive is a variant of the leader election algorithm
described in Section 3.1 that, instead of directly electing a leader particle, elects
a leader node on the surface layer. After the surface layer is completely coated,
the particle occupying the leader node becomes the leader particle. This leader
particle triggers the general layering primitive, which allows each layer i ≥ 2 to
form once layer i− 1 is complete. We describe each of these primitives in detail
after introducing some preliminaries.

Preliminaries. Particles can be in one of five states: idle, follower, root, marker,
and retired. Throughout the coating algorithm, a particle P keeps track of its
current layer number, denoted P.layer. However, to respect the constant-size
memory constraint, P.layer is stored modulo 4 in a particle’s memory. A layer
is said to be filled if all nodes in that layer are occupied by retired particles.

Spanning Forest Primitive. The spanning forest primitive for coating extends the
spanning forest primitive in Section 3.2. Instead of assuming the root particles
are predetermined, idle particles become roots if they are adjacent to the object
or a retired particle. Additionally, if the new root was adjacent to the object, it
makes the node it occupies a leader candidate node and begins to assist in leader
election, described below. As usual, the root is responsible for leading its tree
of followers; the path it traverses is defined by the complaint-based coating and

general layering primitives, described below. It is possible that a root may be
blocked by particles of another tree during its path traversal. Instead of using
the root swap operation defined in Section 3.2, blocked roots in the coating
algorithm simply wait. An unblocked root is called a super-root.

Complaint-Based Coating. The complaint based-coating primitive is responsible
for coating the surface layer with particles. When an idle particle becomes a
follower according to the spanning forest primitive, it generates a complaint
flag. Complaint flags are forwarded from particles to their parents through the
spanning forest. In more detail, each particle can hold at most two complaint
flags. Whenever a particle P is holding at least one complaint flag, it forwards
one flag to its parent as long as its parent is holding less than two flags.

These complaint flags eventually accumulate at and behind a super-root of
the spanning forest. A super-root can only expand along its traversal path if it
is holding a complaint flag and, when it expands, it consumes one complaint flag
(see Fig. 20b–20c). No other particles (i.e., roots or followers) need complaint
flags to perform their movements. When a root is in a situation where it could
perform a handover with either another root on the object or a follower not
yet on the object, it gives preference to the follower (see Fig. 20d–20e). These
movement rules ensure that a particle not yet in the surface layer will eventually
join, provided the surface layer is not already filled.

(a) (b) (c)

(d) (e) (f)

Fig. 20: Example of the complaint-based coating primitive. The roots (black dots
with gray circles) are coating the object (black polygon) behind the super-root
(gray circle with black arrow). Complaint flags are forwarded to the super-root
to enable movement and allow more followers to join the surface layer.

Node-Based Leader Election. The node-based leader election primitive runs in
parallel with the complaint-based coating primitive to elect a leader node on

the surface layer. This primitive uses a variant of the algorithm presented in
Section 3.1, where the leader candidates are nodes instead of static particles.
The roots in the surface layer facilitate the competition between leader node
candidates by storing and transferring all the tokens and state information used
by the leader election algorithm for the node(s) they occupy. Root movements
are handled carefully so that no leader election information is lost or moved to
a different node; for example, during a handover between an expanded particle
P and a contracted particle Q, P transfers all leader election information about
the node occupied by its tail to Q.

The node-based leader election primitive will not successfully elect a leader
node until all nodes of the surface layer are occupied. Once a leader node emerges,
the first contracted particle to occupy it becomes both retired and a marker. This
marker particle designates a neighboring node in layer 2 as a marker node, which
will act as the starting point for the next layer. If a contracted root is following
a retired particle, it also becomes retired, causing the surface layer to fill with
retired particles in counterclockwise order. Once the surface layer is completely
filled with retired particles, the general layering primitive is activated.

One caveat is necessary before presenting the final primitive. If the surface
layer is longer than the number of particles in the system (i.e., B1 > n), a leader
node will never be elected. However, the complaint-based coating primitive will
still continue until all complaint flags are consumed by the super-root, bringing
all particles in the system into the surface layer. This results in a successful
coating of the object; all particles are as close to the object as possible.

General Layering. The general layering primitive handles the coating of all layers
i ≥ 2. Following the spanning forest primitive, followers become roots whenever
they become adjacent to a retired particle. In the general layering primitive,
roots perform a clockwise traversal of their layer if their layer number is odd
(see, e.g., Fig. 21a), and a counterclockwise traversal otherwise.

One of three cases eventually occurs for a root P . First, if P encounters an
unoccupied node in the layer below it, it moves into the lower layer, causing it
to change the direction of its traversal (Fig. 21b–21c). Second, if P is contracted
and encounters a retired particle in its layer, it also retires (Fig. 21d). Finally, if
P is contracted and occupies the marker node designated by the marker particle
in the layer below, it waits until the marker particle signals that layer P.layer−1
is completely filled (which it can determine locally). Once signalled, P retires and
becomes the marker particle for layer P.layer, designating a neighboring node
in layer P.layer + 1 as the next marker node. This continues until all particles
become retired.

Analysis The correctness of the universal coating algorithm follows from the
safety condition, i.e., that the set nodes occupied by particles and objects remains
connected at all times, and the liveness condition, i.e., that the system eventually
makes progress. Progress is made if an idle particle becomes active (i.e., a root
or follower), a movement is executed, or an active particle retires. Both safety
and liveness are proven by Derakshandeh et al. in [21].

(a) (b) (c) (d)

Fig. 21: Example of the general layering primitive. Retired particles are shown
in black circles, and marker particles are shown in black hexagons. A root (gray
circle) (a) traverses layer 3 in a clockwise direction, (b) encounters an unoccupied
location in layer 2, (c) enters layer 2 and changes directions, and (d) retires.

In [14], Daymude et al. use a careful dominance argument to bound the
runtime of the universal coating algorithm. To coat the surface layer, the particle
system first organizes into a spanning forest. By Theorem 4, this is achieved in
O(n) rounds. The surface layer is then coated in O(B1) = O(n) rounds, where
B1 is the length of the surface layer, assuming there are enough particles to
do so. By Theorem 2, a leader node is elected in an additional O(B1) rounds,
w.h.p, allowing the particles of the surface layer to retire in O(B1) more rounds.
By a similar argument, coating the higher layers is shown to take another O(n)
rounds in the worst case. All together, we have the following theorem.

Theorem 11. The universal coating algorithm correctly solves a valid instance
of the object coating problem (P, O) in O(n) rounds in the worst case, w.h.p,
where n is the number of particles in P.

We conclude with the following theorem, which shows that the universal
coating algorithm achieves the optimal bound.

Theorem 12. The worst-case runtime required by any local-control algorithm
to solve the object coating problem for a system of n particles is Ω(n) rounds.

5 Stochastic Algorithms Under the Amoebot Model

In the stochastic approach to self-organizing particle systems, algorithms under
the amoebot model are designed and analyzed using concepts from statistical
physics and stochastic processes. Instead of using careful state management and
communication to drive particle computation and movement as in the algorithms
of Section 4, these stochastic algorithms are stateless, use almost no communi-
cation, and depend only on probabilistic decisions. Designing these algorithms
begins by defining an energy function that captures the objectives for the parti-
cle system. One then designs Markov chains that, in the long run, favor particle
system configurations with desirable energy values. Although Markov chains are
usually defined at a global, system level, these must be designed carefully so that

they can be translated into fully distributed, local, asynchronous algorithms run
by each particle individually.

The motivation underlying the design of these Markov chains comes from sta-
tistical physics, where ensembles of particles similar to those considered in the
amoebot model represent physical systems. Previous studies on these systems
have shown that local micro-behaviors can induce global, macro-scale changes
to a system [3,4,46], yielding the kind of emergent phenomena desirable for pro-
grammable matter. Like a spring relaxing, physical systems favor configurations
that minimize energy. Each system configuration σ is assigned an energy value
by a Hamiltonian H(σ) and a corresponding weight w(σ) = e−B·H(σ), where
B = 1/T is inverse temperature. Markov chains have been well-studied as a
tool for sampling system configurations with probabilities proportional to their
weight w(σ), where configurations with the least energy H(σ) are the most likely
to be sampled.

The stochastic approach to self-organizing particle systems utilizes a Hamil-
tonian H(σ) over particle system configurations σ that assigns the lowest val-
ues to desirable configurations; a corresponding Markov chain algorithm is then
designed to favor these configurations with small H(σ). Each problem uses a
different Hamiltonian. Each problem also uses a bias parameter λ = eB . The
weight of a configuration then becomes w(σ) = λ−H(σ). Thus, raising λ (by in-
creasing B, effectively lowering temperature) increasingly favors configurations
with lower energy values, yielding the desired particle system configurations.

Before introducing the stochastic algorithms under the amoebot model, we
give a brief primer on the terminology and techniques used in their design.

Terminology. A particle system configuration is the set nodes (locations) of G∆
occupied by particles. An edge of a configuration is an edge of G∆ where both
endpoints are occupied by particles. When referring to a path, we mean a path of
such edges. Two particles are connected if there exists a path between them, and
a configuration is connected if all pairs of particles are9. A hole in a configuration
is a maximal finite connected component of unoccupied locations.

Markov Chains. A Markov chain M is a memoryless stochastic process defined
on a state space Ω. Here, Ω is a set of particle system configurations; thus, we
only consider state spaces that are finite and discrete. The transition matrix
Q : Ω × Ω → [0, 1] is defined so that Q(σ, τ) is the probability of moving from
state σ to state τ in one step, for any pair of states σ, τ ∈ Ω. In Markov chains
for particle systems, transitions correspond to one particle moving one unit in
one direction, and the transition probabilities are chosen carefully to achieve
some objective. The t-step transition probability Qt(σ, τ) is the probability of
moving from σ to τ in exactly t steps.

A Markov chain is irreducible, or its state space is connected, if there is
a sequence of valid transitions from any state to any other state; i.e., for all

9 This definition of configuration connectivity is equivalent to that of system connec-
tivity given in Section 2.2.

σ, τ ∈ Ω, there is a t such that Qt(σ, τ) > 0. A Markov chain is aperiodic if for
all σ, τ ∈ Ω we have gcd{t : Qt(σ, τ) > 0} = 1. A Markov chain is ergodic if
it is both irreducible and aperiodic. Any finite, ergodic Markov chain converges
to a unique stationary distribution π defined as limt→∞Qt(σ, τ) = π(τ), for
all σ, τ ∈ Ω. Any distribution π′ satisfying the detailed balance condition —
π′(σ)Q(σ, τ) = π′(τ)Q(τ, σ) for all σ, τ ∈ Ω — must be this unique stationary
distribution (see, e.g., [27]).

Given a state space Ω, a set of allowable state transitions, and a desired sta-
tionary distribution π on Ω, the celebrated Metropolis-Hastings algorithm [32]
defines a Markov chain on Ω that uses only allowable transitions and has sta-
tionary distribution π. This algorithm sets the probabilities of state transitions
as follows. Starting at a state σ ∈ Ω, choose a neighboring state τ ∈ Ω (one
with an allowable transition from σ to τ) uniformly with probability 1/(2∆),
where ∆ is the maximum number of neighbors of any state. Move from σ to
τ with probability min{1, π(τ)/π(σ)}; with the remaining probability stay at σ
and repeat. Assuming the allowable transitions connect the state space, then
detailed balance will verify that this algorithm yields a Markov chain with π
as its stationary distribution. Although calculating π(τ)/π(σ) seems to require
global knowledge, this ratio can often be calculated with only local information
when many terms cancel out, as is the case for the algorithms presented here.

Obliviousness and Robustness. Compared to the mostly deterministic algorithms
in Section 4, these stochastic algorithms are nearly oblivious, requiring very
little memory. Markov chains are naturally memoryless, and thus the distributed
algorithms derived from them also have very little dependence on memory and
communication. As we will see in Sections 5.1–5.3, only 1–2 bits of memory per
particle are required in the resulting distributed algorithms. This is an artifact
of translating the Markov chain algorithms — where a particle moves from one
node to a neighboring node in a single step — into ones that fully respect the
constraints of the amoebot model, where a particle can perform at most one
expansion or contraction per activation.

Our stochastic algorithms are also significantly more robust (i.e., have a
higher tolerance to failures) than those in Section 4. A distributed algorithm’s
fault tolerance is its ability to correctly solve a problem in spite of potential
failures, a highly desirable and relevant property for programmable matter. One
can imagine that in a system of thousands of particles, a small number of them
may die and cease to move, compute, or communicate (i.e., a crash failure)
or become corrupted and move, compute, or communicate erroneously (i.e., a
Byzantine failure). Even a single fault of either type would cause complete fail-
ure in the algorithms in Section 4. In contrast, the stochastic algorithms have
robustness built in. Because these algorithms are stateless and do not rely on
communication, crashed particles and particles attempting to communicate ar-
bitrary or malicious information have no real effect on the behavior of non-faulty
particles. However, crashed particles act as fixed points that will affect the re-
sulting particle system configurations.

5.1 Compression

The original publication on compression was the first to introduce the stochastic
approach to self-organizing particle systems [11]. This line of work continued
with shortcut bridging (Section 5.2) and separation (Section 5.3), both of which
extend the original algorithm design of compression to achieve more complex
behaviors. We will thus give more motivation and details for compression, while
focusing more on the distinguishing features of the later algorithms.

In the compression problem, a particle system gathers together as tightly as
possible, as in a disc or its equivalent in the presence of some underlying geome-
try. There are many metrics that capture this behavior; e.g., system diameter or
average particle distance to the system’s center of mass. Here, a particle system
must reorganize to minimize its perimeter, where a configuration’s perimeter is
measured by the length of the walk along its boundary. Several examples of this
behavior exist in nature, particularly in social insects: fire ants gather to form
floating rafts [38], cockroach larvae perform self-organizing aggregation [34], and
honeybees choose hive locations based on decentralized swarming and recruit-
ment [9]. While no individual insect can view the whole group when making
decisions and soliciting information, it can take cues from its immediate neigh-
bors to achieve cooperation.

Problem Description Let p(σ) denote the perimeter of a particle system
configuration σ. For a system of n particles, the minimum possible perimeter
is pmin := pmin(n) = Θ(

√
n). A configuration σ with no holes is said to be α-

compressed if p(σ) < α·pmin, for any α > 1. An algorithm solves the compression
problem if, given any particle system in an initially connected configuration and
any α > 1, eventually the system reaches and remains in a set of α-compressed
configurations with all but a probability exponentially small in n.

Analogously, the maximum possible perimeter for a system of n particles
is pmax := pmax(n) = 2n − 2. A configuration σ with no holes is said to be β-
expanded if p(σ) > β ·pmax, for any 0 < β < 1. An algorithm solves the expansion
problem if, given any particle system in an initially connected configuration and
any 0 < β < 1, eventually the system reaches and remains in a set of β-expanded
configurations with all but a probability exponentially small in n.

Markov Chain M We first present the Markov chainM for compression and
will later show its translation into a distributed, local, asynchronous algorithm
A that can be run by individual particles. M is defined on the state space Ω
of all connected particle system configurations of n contracted particles. Both
M and A start in an arbitrary configuration σ0 ∈ Ω and take a bias parameter
λ > 1 as input, where λ controls the preference for having small perimeter.

Recall that, for each stochastic algorithm, a Hamiltonian H(σ) is defined
which assigns the lowest energy values — and thus the largest weight w(σ) =
e−B·H(σ) = λ−H(σ) — to desirable configurations. To achieve compression, the
lowest energy values should be assigned to the configurations with the smallest

perimeter. In [11], Cannon et al. prove that minimizing configuration perimeter
p(σ) is equivalent to maximizing the number of configuration edges e(σ). Thus,
by setting H(σ) = −e(σ), we obtain w(σ) = λe(σ). This implies that λ > 1
corresponds to particles favoring having more neighbors while λ < 1 corresponds
to particles favoring having fewer neighbors.

Markov chainM is carefully designed to maintain several critical properties
that are necessary for its correctness and for applying certain tools from Markov
chain analysis. First, M must keep the particle system connected and hole-free
throughout its execution, assuming it starts in a connected, hole-free configu-
ration. Next, M should be ergodic and, after a move is made, there should be
a nonzero probability that it is undone in the next step. Finally, in order to
solve the compression problem, M must eventually reach a stationary distribu-
tion that favors system configurations proportional to their weight w(σ) = λe(σ)

using only local information and local particle moves.

Local Properties for Simple Connectivity. Two local properties are used to ensure
the particle system remains connected and hole-free throughout the execution
ofM. Together, these properties ensure that a particle’s local connectivity with
respect to its neighbors does not change as a result of its move. Moreover, they
ensure that every move can be undone, as desired.

We use the following notation. For a location ` of G∆, let N(`) denote the
set of particles adjacent to `. For adjacent locations ` and `′, we use N(`∪ `′) to
denote the set N(`)∪N(`′), excluding particles occupying ` or `′. Let S = N(`)∩
N(`′) be the particles adjacent to both locations; note that |S| ∈ {0, 1, 2}. The
following properties can be locally checked by an expanded particle occupying
both ` and `′, and are symmetric with respect to these locations (see Fig. 22).

Property 1. |S| ∈ {1, 2} and every particle in N(`∪ `′) is connected to a particle
in S by a path through N(` ∪ `′).

Property 2. |S| = 0, ` and `′ each have at least one neighbor, all particles in
N(`)\{`′} are connected by paths within this set, and all particles in N(`′)\{`}
are connected by paths within this set.

ℓ ℓ'

(a) Prop. 1: X

ℓ ℓ'

(b) Prop. 1: X

ℓ ℓ'

(c) Prop. 2: X

ℓ ℓ'

(d) Prop. 2: X

Fig. 22: Examples of particle neighborhoods with respect to Properties 1 and 2.
Particles of S are drawn with black circles around them.

We can now present the Markov chain M for compression (Algorithm 1).

Algorithm 1 Markov Chain M for Compression

Beginning at any connected configuration σ0 of n contracted particles, repeat:
1: Select particle P uniformly at random from among all particles; let ` be its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) uniformly at random.
3: if `′ is unoccupied then
4: P expands to occupy both ` and `′.
5: Let e = |N(`)| be the number of neighbors P had when it was contracted at `,

and let e′ = |N(`′)| be the number of neighbors P would have if it contracts to `′.

6: if (i) ` and `′ satisfy Property 1 or 2, (ii) e < 5, and (iii) q < λe
′−e then

7: P contracts to `′.
8: else P contracts back to `.

Distributed, Local, Asynchronous Algorithm A We now present the lo-
cal, distributed, asynchronous algorithm A that each particle runs. Recall from
Section 2.1 that during a single activation of a particle P , P can perform an
arbitrary amount of computation and at most one expansion or contraction. In
particular, P cannot do both an expansion and a contraction in one activation
as M does in a single step. Thus, A must decouple a single step of M into two
(not necessarily consecutive) particle activations and carefully handle the way
in which the particle’s neighborhood may change between its two activations
(see [11] for full details of this decoupling).

Algorithm 2 Distributed Algorithm A for Compression run by Particle P

If P is contracted:
1: Let ` denote P ’s current location.
2: Particle P chooses neighboring location `′ uniformly at random from the six pos-

sible choices, and generates a random number q ∈ (0, 1).
3: if `′ is unoccupied and P has no expanded neighboring particle at ` then
4: P expands to occupy both ` and `′.
5: if there are no expanded particles adjacent to ` or `′ then
6: P sets a flag f = True in its local memory.
7: else P sets f = False.

If P is expanded:
8: Let N∗(·) ⊆ N(·) be the set of neighboring particles excluding any heads of ex-

panded particles.
9: Let e = |N∗(`)| be the number of neighbors P had when it was contracted at `,

and let e′ = |N∗(`′)| be the number of neighbors P would have if it contracts to `′.
10: if (i) ` and `′ satisfy Property 1 or 2 with respect to N∗(·), (ii) e < 5, (iii)

q < λe
′−e, and (iv) f = True then

11: P contracts to `′.
12: else P contracts back to `.

Each particle P continuously runs Algorithm A, executing Steps 1–7 if P
is contracted and Steps 8–12 if P is expanded. Conditions (i)–(iii) in Step 10
of A are the same as those in Step 6 of M. The additional Condition (iv) en-
sures P is the only particle in its neighborhood potentially moving to a new
position since it last expanded. Any conflicts arising from two particles concur-
rently attempting to expand into the same location are assumed to be resolved
arbitrarily (Section 2.1). Hence, any concurrent movements will cover pairwise
disjoint neighborhoods and the respective actions will be mutually independent.

However, in an asynchronous setting, one cannot typically assume the next
particle to be activated is equally likely to be any particle, as in Step 1 ofM. This
assumption is made in order to explicitly calculate the stationary distribution of
M (Lemma 1) and rigorously analyze it (Theorems 13 and 14), but the system’s
behavior is not expected to differ substantially if this requirement was relaxed.

These random sequences of particle activations can be approximated using
Poisson clocks with mean 1. That is, each particle can activate and execute Al-
gorithm A at a random real time drawn from the exponential distribution e−t.
After each action, a particle could then compute another random time drawn
from the same distribution e−t and activate again after that amount of time has
elapsed. The exponential distribution is unique in that, if particle P has just
activated, it is equally likely that any particle will be the next particle to acti-
vate, including particle P (see, e.g., [27]). Moreover, a particle updates without
requiring knowledge of any other particle’s clock. As an aside, the analysis can
be modified to accommodate each clock having its own constant mean; however,
for ease of presentation, we assume here that they are all i.i.d.

Results Cannon et al. give a detailed analysis of Markov chainM in [11]; here,
we briefly present the major results on some properties of M, its stationary
distribution π, and its correctness in solving compression. We conclude with
results on using M to also solve expansion. Note that all results for M extend
to the local algorithm A.

Invariants of M. Cannon et al. prove that if the particle system is initially
connected, M maintains system connectivity. Moreover, once a connected con-
figuration with no holes is reached, M will never introduce new holes to the
system. Together, these imply that once M reaches the subspace Ω∗ ⊂ Ω of all
connected, hole-free configurations of n particles, it will remain in Ω∗ forever.
Since M is finite and ergodic on Ω∗ (a result shown in [11]), it converges to a
unique stationary distribution π on Ω∗ that can be verified by detailed balance.

Lemma 1. Markov chain M for compression has a unique stationary distribu-
tion π given by:

π(σ) =

{
λe(σ)/Z if σ ∈ Ω∗;

0 otherwise.

where Z =
∑
τ∈Ω∗ λ

e(τ) is the normalizing constant or partition function.

Achieving Compression and Expansion. Markov chainM — and, by extension,
local algorithm A — solve both the compression and expansion problems de-
pending on the value of bias parameter λ. Although compression or expansion
could occur beforeM even converges to its stationary distribution π, the proofs
in [11] rely on analyzing π. First, it is shown that for any α > 1 and provided
λ and n are large enough, a configuration chosen at random according to π is
α-compressed with all but a probability that is exponentially small in n.

Theorem 13. For any α > 1, let λ∗ = (2+
√

2)α/(α−1). There exists n∗ ≥ 0 and
ζ < 1 such that for all λ > λ∗ and n > n∗, the probability that a random sample
σ drawn according to the stationary distribution π of M is not α-compressed is
exponentially small:

Pr
σ∼π

[p(σ) ≥ α · pmin] < ζ
√
n.

It can also be shown that there is some constant α for which α-compression
occurs when λ > 2 +

√
2 is fixed. However, there is a tradeoff: smaller values of

λ require larger values of α and vice versa.
The algorithm also provably achieves expansion for different values of the

bias parameter λ. It is shown that, for all 0 < λ < 2.17 and provided n is
large enough, there is a constant 0 < β < 1 such that a configuration chosen
at random according to the stationary distribution of M is β-expanded with
all but exponentially small probability in n. This is counter-intuitive, since it
implies that λ > 1 (i.e., favoring more neighbors) is not sufficient to guarantee
particle compression.

Theorem 14. For any 0 < β < 1, let λ∗ = (
√

2/(2+
√

2)β)1/(1−β). There exists
n∗ ≥ 1 and ζ < 1 such that for all λ < λ∗ and n ≥ n∗, the probability that a
random sample σ drawn according to the stationary distribution π of M is not
β-expanded is exponentially small:

Pr
σ∼π

[p(σ) ≤ β · pmax] < ζ
√
n.

Similar to compression, it is also shown that there is a constant β for which
β-expansion occurs when 0 < λ < 2.17 is fixed. Again, there is a tradeoff in
larger values of λ requiring smaller values of β and vice versa.

Convergence Time of M. Although compression provably occurs with all but
exponentially small probability onceM converges to its stationary distribution,
no explicit bounds are given on the time required for this to occur. However,
simulations support the conjecture that the worst case number of steps of M
needed to observe compression is Ω(n3) and O(n4), or O(n3) rounds of A.

Simulations In practice, Markov chain M yields good compression. Fig. 23
depicts a simulation of M for λ = 4 on 100 particles that begin in a line and
become compressed. In contrast, λ = 2 (which still favors having more particle
neighbors), does not yield compression; see Fig. 24, where even after 20 million

steps of M, the particles have not compressed. Cannon et al. conjecture there
is a phase transition in λ, i.e., a critical value λc such that for all λ > λc the
particles compress and for all λ < λc they do not. Such phase transitions exist
for similar statistical physics models (e.g., [8]). Theorems 13 and 14 indicate that
if λc exists, then 2.17 ≤ λc ≤ 2 +

√
2.

(a) (b)

(c) (d) (e)

Fig. 23: 100 particles in a line with occupied edges drawn, after (a) 1 million,
(b) 2 million, (c) 3 million, (d) 4 million, and (e) 5 million steps ofM with bias
λ = 4.

5.2 Shortcut Bridging

Andrés Arroyo et al. further validated the stochastic approach to self-organizing
particle systems in an investigation of shortcut bridging [1]. This work is inspired
by an entomological study [43] that found army ants of the genus Eciton con-
tinuously modify the shape and position of foraging bridges — constructed and
maintained by their own bodies — across holes and uneven surfaces on the forest
floor. These bridges appear to stabilize in a structural formation that balances
the “benefit of increased foraging trail efficiency” with the “cost of removing
workers from the foraging pool to form the structure” [43]. Shortcut bridging is
an attractive goal for programmable matter, which may need to make similar
tradeoffs when maintaining bridges over terrain with structural irregularities.

To consider this problem in the amoebot model, two model extensions (Sec-
tion 2.3) are employed. First, static objects are used to anchor the particle
system to certain fixed sites. Second, the locations of G∆ are considered either

(a) (b)

Fig. 24: 100 particles in a line with occupied edges drawn, after (a) 10 million
and (b) 20 million steps of M with bias λ = 2.

gap (unsupported) or land (supported) using node differentiation. The notion of
configuration perimeter used in compression (Section 5.1) is extended to address
this new land/gap setting as follows. The weighted perimeter p(σ, c) of a particle
system configuration σ is the summed weight of the edges on the boundary of σ,
where edges between land locations have weight 1, edges between gap locations
have weight c ≥ 1, and edges with one endpoint on land and one endpoint in
the gap have weight (1 + c)/2.

Problem Description An instance of the shortcut bridging problem has the
form (L,O, σ0, c, α), where L ⊆ V is the set of land locations, O is the set of
(two) objects to bridge between, σ0 is the initial configuration for the particle
system, c ≥ 1 is a fixed weight for edges between gap locations, and α > 1 is
a parameter capturing error tolerance. An instance is valid if (i) the objects of
O and particles of σ0 all occupy locations in L, (ii) σ0 connects the objects,
and (iii) σ0 is connected. Let pmin := pmin(L,O, σ0, c) be the minimum possible
weighted perimeter of a configuration. An algorithm solves a valid instance if,
beginning from σ0, with all but exponentially small probability it reaches and
remains in a set of configurations Σ∗ such that any σ ∈ Σ∗ has p(σ, c) < α ·pmin.

Algorithm As an extension of compression, the Markov chain and resulting
distributed algorithm for shortcut bridging share many characteristics with the
Markov chainM (Algorithm 1) and algorithm A (Algorithm 2) for compression.
For brevity, we focus on the main differences.

To solve the shortcut bridging problem, an algorithm must yield configura-
tions that have small weighted perimeter. In essence, an algorithm must balance
the competing objectives of having a short path between the two objects while
not forming too large of a bridge. These competing objectives are captured by

preferring configurations σ that have both small perimeter p(σ), the length of
the walk around the boundary of σ, and small gap perimeter g(σ), the number of
perimeter edges in the gap. Using the weights defined above, weighted perimeter
becomes p(σ, c) = p(σ) + (c − 1)g(σ); thus, minimizing weighted perimeter is
equivalent to simultaneously minimizing both perimeter and gap perimeter.

Two bias parameters are used: λ and γ. The desired Markov chain for short-
cut bridging should sample configurations σ proportional to weight w(σ) =
λ−p(σ)γ−g(σ). Setting λ > 1 corresponds to favoring having small perimeter,
as it did for compression, while γ > 1 corresponds to favoring having small gap
perimeter. Arithmetic shows λ−p(σ,c) = λ−p(σ)−(c−1)g(σ) = λ−p(σ)(λc−1)−g(σ),
so setting γ = λc−1 results in the desired relationship between perimeter, gap
perimeter, and weighted perimeter.

The same local properties from compression (Properties 1 and 2) are used in
shortcut bridging to ensure the particle system remains connected, no new holes
form, and every move made can be undone. Only one small change is made: the
definitions of location neighborhoods (e.g., N(`), N(`∪ `′), etc.) are extended to
include objects, ensuring that the system does not break away from the points
it is supposed to bridge between.

We can now present the Markov chain MB for shortcut bridging. It follows
the same procedure as Markov chain M for compression (Algorithm 1), with
two differences. First, instead of counting neighbors as in Step 5 of M, MB

simply refers to the configuration with particle P at its original location ` as σ
and the configuration with P at its new location `′ as σ′. Then, MB replaces
the probability condition in Step 6 of M with q < λp(σ)−p(σ

′)γg(σ)−g(σ
′). One

might observe that this probability is not defined locally; however, an argument
in [1] shows that it can be calculated by an expanded particle occupying ` and
`′ using only local information from its neighborhood.

Markov chain MB can be directly translated to a fully distributed, local,
asynchronous algorithm AB for shortcut bridging using the same decoupling
and Poisson clock mechanisms described for compression.

Results In [1], Andrés Arroyo et al. give a detailed analysis of the Markov chain
MB and resulting distributed algorithm AB for shortcut bridging. Here, we will
only present the highlights. As for compression,MB is shown to maintain system
connectivity. It is also shown to eventually reach the set of configurations with
no holes, after which all configurations will remain hole-free.

The resulting stationary distribution πB over ΩB (the set of all configura-
tions reachable from σ0, the initial configuration, via valid transitions of MB)
is shown to be πB(σ) = λ−p(σ)γ−g(σ)/Z, where Z =

∑
τ∈ΩB

λ−p(τ)γ−g(τ) is
the normalizing constant. Analyzing this stationary distribution with a careful
Peierls argument results in the following theorem, which shows MB correctly
solves the shortcut bridging problem.

Theorem 15. Consider any α > 1 and let λ∗ = (2 +
√

2)α/(α−1). There exists
n∗ > 0 such that for all λ > λ∗ and n > n∗, if γ = λc−1, the probability that
a random sample σ drawn from the stationary distribution of MB has weighted

perimeter p(σ, c) ≥ α · pmin is exponentially small in n, where n is the number
of particles in the system.

Simulation results supporting the findings of Theorem 15 can be seen in
Figs. 25 and 26, where MB was run with biases λ = 4 and γ = 2 (i.e., c = 3/2)
on a V-shaped and N-shaped land mass, respectively.

(a) (b) (c) (d) (e)

Fig. 25: A particle system, beginning in configuration (a), using biases λ = 4 and
γ = 2 to shortcut a V-shaped land mass after (b) 2 million, (c) 4 million, (d)
6 million, and (e) 8 million steps of Markov chain MB . The two objects (large,
dark gray) anchor the particle system (black) to land (gray).

(a) (b) (c)

Fig. 26: A particle system, beginning in configuration (a), using biases λ = 4 and
γ = 2 to shortcut an N-shaped land mass after (b) 10 million and (c) 20 million
steps of Markov chain MB .

Dependence on Gap Angle. The shortcut bridging algorithm is also shown in [1]
to have a dependence on the internal angle θ of the gap similar to that of the
army ant bridges studied in [43]. Informally, it is shown that when θ is sufficiently
small, with all but exponentially small probability the bridge constructed by the
particles stays close to the bottom of the gap (away from the apex of angle θ). For
some large values of θ, it is shown that the bridge constructed by the particles
stays close to the top of the gap (nearer to land) with all but exponentially small
probability. Although the bounds obtained in [1] are relatively narrow (e.g., the
proofs for small θ only hold for gap angles less than θ1 = 0.0879 ∼ 5.03◦),

simulations suggest these bounds are far from tight. Fig. 27 depicts simulation
results that are consistent with the proven angle dependence behaviors, but were
obtained using angles and bias parameter values outside the proven bounds.

(a) (b) (c)

Fig. 27: A particle system using biases λ = 4 and γ = 2 to shortcut a V-shaped
land mass with gap angle (a) π/6, (b) π/3, and (c) π/2 after 20 million steps of
Markov chain MB .

5.3 Separation

Examples of heterogeneous entities separating and integrating exist at many
scales, from molecules exhibiting attractive and repulsive forces, to mixed solu-
tions of varying viscosities, to inherent human biases that influence how we form
and maintain social groups. This fundamental behavior of heterogeneous entities
separating or integrating in response to environmental stimuli spans remarkably
diverse areas of study. Of particular relevance to the stochastic approach to self-
organizing particle systems are the Schelling model [49,50] — which explores how
micro-motives of individuals can induce macro-phenomena such as racial segre-
gation in residential neighborhoods — and the Ising model of ferromagnetism
from statistical physics [55].

In the separation problem, a heterogeneous particle system — i.e., one in
which particles have different immutable colors — must self-organize to form
monochromatic clusters, resulting in observable color class separation. Each par-
ticle P keeps a color c(P) ∈ {c1, . . . , ck} in its memory that is visible to itself and
its neighbors, where k < n is some small constant. An edge between two neigh-
boring particles P and Q is homogeneous if c(P) = c(Q) and is heterogeneous
otherwise. Cannon et al. give a Markov chain algorithm MS for separation in a
two-color particle system in [10], though the algorithm has also been shown to
generalize to k-color particle systems in simulations (for a constant k). We will
focus on the two-color case for the problem statement, results, and simulations,
but will describe the Markov chainMS and corresponding distributed algorithm
AS for separation in full k-color generality.

Problem Description Informally, a two-color particle system configuration is
separated if there is a set R of particles such that R mostly contains particles of
color c1, its complementR mostly contains particles of color c2, and the boundary
between R and R is small. If this is the case, R and R are called clusters. More
formally, a configuration is (β, δ)-clustered, for β > 0 and δ < 1/2, if there are at
most δ|R| particles of color c2 in R, at most δ|R| particles of color c1 in R, and
the boundary between R and R is of size at most β

√
n, where n is the number

of particles in the system.

An instance of the separation problem has the form (σ0, β, δ) where σ0 is a
connected initial configuration of colored particles and β > 0 and 0 < δ < 1/2
are constants. An algorithm solves an instance if, beginning from configuration
σ0, with all but exponentially small probability it reaches and remains in a set
of configurations that are (β, δ)-clustered.

Algorithm As was the case for shortcut bridging (Section 5.2), the Markov
chain MS and corresponding distributed algorithm AS for separation are also
extensions of the compression algorithm (Section 5.1) and follow the stochastic
approach to self-organizing particle systems. To achieve separation, an algorithm
should favor configurations with many edges (inducing small perimeter, as in
Section 5.1) and large monochromatic clusters. These objectives are achieved by
sampling configurations σ proportional to their weight w(σ) = λe(σ)κa(σ) where
e(σ) is the number of edges and a(σ) is the number of homogeneous edges in σ.
Bias parameter λ controls the system’s preference for having small perimeter,
as in compression and shortcut bridging; larger values of λ increasingly favor
compressed configurations while for small λ the opposite is true. The additional
bias parameter κ controls separation, favoring clustered/separated configura-
tions when κ is large and well-integrated configurations when κ is small.

A new swap move is introduced to enable adjacent particles of different colors
to switch places. For two neighboring contracted particles P and Q, either P or
Q can initiate a swap to exchange colors, which can be implemented as follows: P
reads x← c(Q) from the memory of Q, overwrites c(Q)← c(P) in the memory
of Q, and finally updates its own color c(P)← x. Adding this swap move enables
faster convergence of the separation algorithm in practice, but is not necessary
for any of its formal results.

In addition to the usual location neighborhood definitions (e.g., N(`), N(`∪
`′)) used in compression and shortcut bridging, separation also uses color-specific
location neighborhoods. More precisely, for a location `, Ni(`) denotes the set
of particles of color ci adjacent to location `. For neighboring locations ` and `′,
Ni(` ∪ `′) denotes the set Ni(`) ∪Ni(`′), excluding particles occupying ` and `′.
These color-specific neighborhoods are used when calculating the difference in
the number of homogeneous edges between a particle’s new and old position.

Separation also uses local Properties 1 and 2 from compression to ensure
the particle system remains connected and no new holes form. However, these
properties need not be verified for swap moves, which do not change the set of

occupied nodes and thus cannot disconnect the system or create a hole. We can
now present the Markov chain MS for separation (Algorithm 3).

Algorithm 3 Markov Chain MS for Separation

Beginning at any connected configuration σ0 of n contracted particles, repeat:
1: Select particle P uniformly at random from among all particles; let ci be its color

and ` its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) uniformly at random.
3: if `′ is unoccupied then
4: P expands to occupy both ` and `′.
5: if (i) ` and `′ satisfy Property 1 or 2, (ii) |N(`)| < 5, and (iii) q <

λ|N(`′)|−|N(`)|κ|Ni(`
′)|−|Ni(`)| then

6: P contracts to `′.
7: else P contracts back to `.
8: else if `′ is occupied by particle Q of color cj then
9: P calculates |Ni(`)| and |Nj(`) \ {Q}| and sends these values to Q.

10: Q calculates |Ni(`′) \ {P}| and |Nj(`′)|.
11: if q < γ|Ni(`

′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`
′)| then Q swaps with P .

While MS has much in common with the Markov chain M for compres-
sion (Algorithm 1), it also has important differences. In particular, condition
(iii) in Step 5 of MS specifically addresses homogeneous edges and Steps 8–11
of MS implement the new swap move. Moreover, the translation of MS to a
fully distributed, local, asynchronous algorithm AS for separation does not fol-
low trivially from the translation given for compression. Although decoupling
a particle’s expansion and contraction in Steps 3–7 of MS can be done in a
similar manner to that of compression, locally synchronizing the swap move of
Steps 8–11 ofMS requires additional mechanisms. Details can be found in [10].

Results Cannon et al. rigorously analyze the Markov chain MS and corre-
sponding distributed algorithm AS for k-color separation in [10]. As for com-
pression and shortcut bridging, MS is shown to maintain system connectivity
and remain hole-free throughout its execution, assuming it begins at a connected
and hole-free configuration σ0. Additionally, its stationary distribution πS over
ΩS (the set of all connected, hole-free configurations with the same number
of particles of each color as σ0) is shown to be πS(σ) = λe(σ)κa(σ)/Z, where
Z =

∑
τ∈ΩS

λe(τ)κa(τ) is the normalizing constant.
While these initial results follow from standard techniques, proving thatMS

achieves separation requires significantly heavier machinery. Using a Markov
chain analysis technique known as bridging [37] (not to be confused with the
shortcut bridging behavior described in Section 5.2), it is shown that, among
two-color configurations with the same small external boundary, a configura-
tion sampled according to the stationary distribution πS of MS will be clus-
tered/separated as desired with all but exponentially small probability. We

present the corresponding theorem in its full formality below, but refer the reader
to [10] for a more detailed explanation.

Theorem 16. For any α > 1, β > 4α, and δ < 1/2, there exists κ∗ and n0
(which depend on α, β, and δ) such that for all κ > κ∗ and n > n0, for any
α-compressed boundary B, the probability that a configuration sampled according
to πS from among two-color configurations with n particles and boundary B is
not (β, δ)-clustered is at most ζ

√
n for some constant ζ < 1.

Simulations In simulation, MS exhibits the expected separation behavior for
large λ and κ, as well as integration behaviors for other parameter values. Fig. 28
shows a simulation of MS on a two-color system with 50 particles of each
color using biases λ = 4 and κ = 4, the regime in which the system should
compress and individual color classes should separate. Much of the progress
towards a compressed and separated system occurs in the first million steps,
though the simulation runs for much longer. Fig. 29 compares the resulting
configurations after running MS from the same initial configuration for the
same number of steps, varying only the values of λ and κ. Four distinct phases
appear: expanded-integrated, expanded-separated, compressed-integrated, and
compressed-separated. Thus, although Theorem 16 only proves separation for
two-color systems with small, fixed boundaries, MS appears to be capable of a
diverse set of dynamic behaviors in practice.

Fig. 28: A two-color heterogeneous particle system starting in an arbitrary state
after — from left to right — 0; 50,000; 1,050,000; 17,050,000; and 68,250,000
steps of MS with λ = 4 and κ = 4.

6 Hybrid Programmable Matter

In this section, we discuss a variant of the amoebot model known as hybrid pro-
grammable matter, in which a collection of active robots operate on a connected
system of passive tiles. The robots have similar capabilities to the particles of
the amoebot model, but the tiles — which are uniform and stateless — cannot
move themselves nor perform any computation. To change its (relative) position,
a tile must be lifted and moved by a robot. Unlike in the amoebot model, sys-
tem connectivity is defined with respect to the structure of tiles (including tiles

κ = 0.58 (Integration) κ = 5.20 (Separation)

λ = 0.58
(Expansion)

λ = 5.20
(Compression)

Fig. 29: A two-color heterogeneous particle system starting in the leftmost con-
figuration of Fig. 28 after 50 million steps of MS for various values of the pa-
rameters λ and κ.

being carried by robots) and must be maintained at all times. Since the set of
robots does not need to stay connected, we can abstract away from any specific
locomotion primitive such as the amoebot model’s expansions and contractions.

Although most of the algorithms presented in this section focus on systems
with only one robot, we present the complete model with respect to multiple
robots, as it is the basis of ongoing research. A system of hybrid programmable
matter is composed of k active robots operating on a set of n passive hexagonal
tiles. Each tile occupies exactly one node of the triangular lattice G∆ = (V,E)
(see, e.g., Fig. 30a). A configuration (T, P) consists of a set T ⊂ V of all nodes
occupied by tiles, and the robots’ positions P ⊂ V . Each node can be occupied
by at most one robot. We describe the relative positions of adjacent nodes by
the six compass directions N, NE, SE, S, SW, and NW (see Fig. 30a). As in
the amoebot model, we assume that the robots have a common chirality, but
do not share a coordinate system or global compass. For this chapter, we will
present the algorithms using a single robot as if the robot’s orientation was a
global one; for ease of presentation, we will also assume a common orientation
for the distributed algorithms utilizing multiple robots.

Each robot must occupy or be adjacent to a node occupied by a tile. Ad-
ditionally, the subgraph of G∆ induced by T ∪ Pc must stay connected, where
Pc ⊆ P is the set of positions occupied by robots carrying a tile. In a scenario
where a tile structure swims in a liquid, for example, this restriction prevents

(a) (b)

Fig. 30: (a) A connected set of tiles positioned on the triangular lattice G∆. The
black dots indicate robot positions. (b) Possible movements of tiles u, v, and w.
Tile w cannot be moved anywhere without violating connectivity.

the robots or parts of the tile structure from floating apart. Some examples of
possible tile-moving steps are shown in Fig. 30b.

The robots act as finite automata and operate in rounds of Look-Compute-
Move cycles. In the Look phase, a robot observes the node it occupies, say p, and
the six nodes adjacent to p. For each of these nodes, the robot can determine if it
is occupied by a tile, if it is occupied by a robot, and, in the latter case, the state
of that robot. In the Compute phase, a robot potentially changes its state and
determines its next move according to the observed information. Furthermore,
it may change the state of any robots occupying adjacent nodes. In the Move

phase, a robot can either (i) lift a tile from p if p ∈ T , (ii) place a tile it is
carrying on p if p /∈ T , or (iii) move to an adjacent node while possibly carrying
a tile with it. Each robot can carry at most one tile.

A robot is additionally allowed to carry a constant number of pebbles, which
can be placed on tiles in order to mark them. More specifically, in the Look

phase, a robot can additionally observe whether any tile in its neighborhood is
marked by a pebble. In the Move phase, in addition to its other options, a robot
can either pick up a pebble (if its current tile is marked by a pebble) or place a
pebble (if the current tile is not already marked and the robot has a pebble at
its disposal). Pebbles are stateless and indistinguishable.

We assume the standard Async model from distributed computing in which
robots are activated in an arbitrary sequence of activations, where a robot per-
forms exactly one Look-Compute-Move cycle before the next robot is activated.
A round is complete whenever each robot has been activated at least once.

7 Algorithms for Hybrid Programmable Matter

As the research in hybrid programmable matter is still in its infancy, only a few
results have been established so far. In this section, we focus on two problems:
shape formation and shape recognition. The former is concerned with transform-
ing the tile structure into some desired shape, while the latter considers the

problem of recognizing a given shape. As in the amoebot model, the main dif-
ficulty in designing algorithmic solutions for these problems lies in the robot’s
limited memory and visibility. Here, we investigate how these challenges can be
overcome for hybrid programmable matter.

7.1 Algorithmic Primitives

Before presenting the shape formation and recognition algorithms, we first out-
line some basic results and present a set of helpful primitives.

Exploring the tile structure. The hybrid programmable matter model essentially
reduces to a set of robots moving in a possibly dynamic but discrete environment.
A natural question to ask is whether the robots are able to gather information
about the environment. For example, one may ask whether a single robot is able
to explore the tile structure, i.e., visit each node at least once, and then halt. It
is known that, if the tile structure is assumed to be compact, a single robot can
fully traverse the structure by visiting the adjacent columns (i.e., consecutive
connected tiles from N to S) of any column in clockwise order. An additional
pebble (or a second robot) suffices to let the algorithm terminate. However, when
considering arbitrary tile structures, even a single pebble does not suffice; this
follows from the observation that, when the tile structure is static, the hybrid
model reduces to Finite Automata in Labyrinths [33]. On the other hand, this
problem can be solved with two pebbles [5].

The exploration problem relates to many other practical problems: tile move-
ment safety, i.e., deciding whether the removal of a tile would disconnect the tile
set, hole detection, i.e., deciding whether a structure is simply connected, and
boundary detection, i.e., reaching the structure’s outer boundary. Similar to the
construction given by Gmyr et al. [31], it can be shown that none of these prob-
lems can be solved by a single robot without using a pebble. The same authors
show that while tile movement safety can be decided with a single pebble, the
best known solutions for hole and boundary detection require two pebbles. How-
ever, these results only hold if the robots are not allowed to move tiles. Once
this is allowed, these problems can be easily solved using approaches similar to
the algorithms we present in Sections 7.2 and 7.3.

Safe Tile Movements. Given the previous discussion on the difficulty of deciding
tile movement safety, it may seem that a complex, multi-robot strategy for identi-
fying tiles to be moved may be necessary for ensuring tile structure connectivity.
However, a different — and surprisingly simple — strategy to maintain connec-
tivity under tile movements is the following. If the tiles in the neighborhood of a
tile t satisfy local connectivity — i.e., they form a connected component around
t — t can be safely moved, as in Fig. 31a. If the neighboring tiles form two
connected components separated by a single empty node u in the neighborhood
of t, then t can be safely placed onto u without violating connectivity (Fig. 31b).
Otherwise, tile movement safety cannot be locally decided (Fig. 31c). Using these
local rules, a tile t that is safe to move can always be found by moving NW, SW,

or N (in that precedence) until reaching a tile that has no adjacent tile in any
of these directions. If t satisfies local connectivity, it can be lifted and moved
anywhere; otherwise, it must have adjacent tiles to the northeast and south but
no adjacent tile to the southeast, so t can be placed onto the empty node to the
southeast. By repeating this strategy, a robot is guaranteed to eventually find a
tile that is locally connected, and therefore safely removable.

(a) (b) (c) (d)

Fig. 31: The black tile can (a) be safely removed, (b) only be moved to the
adjacent node marked by a dashed outline, or (c) not be moved at all. (d) The
triangle to be constructed by the shape formation algorithm in Section 7.2.

7.2 Shape Formation

Arguably one of the most interesting problems for hybrid programmable matter
is shape formation. Shape formation problems may consider different shapes to
form (e.g., a hexagon as in Section 4.1, or a sequentially constructible shape
as in Section 4.2), different optimization goals (e.g., runtime, or distance of
moved tiles), and side conditions (e.g., avoiding moving tiles beyond the initial
structure’s convex hull). In this section, we consider the problem of forming a
triangle. We first present an algorithm for triangle formation by a single robot,
and then show how it can be modified to handle a multi-robot setting. Finally,
we present two variants of the algorithm that aim at minimizing the algorithm’s
running time and only moving tiles within the initial structure’s convex hull,
respectively. The section is based on the work of Gmyr et al. [31], where proofs
and more detailed descriptions of the algorithms can be found.

Problem Description Consider a connected set of tiles and a single robot
that is initially placed on some tile. An algorithm solves the triangle formation
problem for hybrid programmable matter if it transforms the initial tile structure
into a triangle that is axis-aligned along the robot’s north-south axis and grows
from east to west (see Fig. 31d).

Algorithm In a naive approach to shape formation, the robot could iteratively
search for a tile that can be removed without disconnecting the tile structure and
then move that tile to some position such that the shape under construction is
extended. Although a safely removable tile always exists, a robot may not be able
to find it as previously discussed. Instead, the safe tile movements discussed in
Section 7.1 are used to first transform the structure into a line (i.e., a sequence of
connected tiles from north to south). From this intermediate structure, a triangle
can easily be constructed in a second stage.

To construct a line, the robot first moves S as far as possible, i.e., as long as
there is a tile in direction S. Then, it alternates between a tile searching phase,
in which it moves N, NW, and SW (in that precedence) until there is no longer
a tile in any of these directions; and a tile moving phase, in which it lifts the tile,
moves one step SE, moves S until it reaches an empty node, and then places the
tile. The line is complete once the robot does not encounter any adjacent tiles to
the east or west in the tile searching phase. Fig. 32 shows the first several steps
of this algorithm.

Fig. 32: First several steps of line formation. The black tiles are moved to the
positions marked by dashed outlines.

In the second stage, the triangle is built by repeatedly taking the northern-
most tile of the line, carrying it south to the vertex of the forming triangle, and
adding it to the westernmost layer of the triangle (see Fig. 33). More specifically,
the robot places the first tile NW of the triangle’s vertex. Every other tile of
the triangle is then placed as follows. The robot first takes the northernmost
tile of the line and brings it to the vertex. It then walks NW and S (in that
precedence) until an empty node is reached. If there is a tile to the southeast,
the robot moves one step S and places the tile. Otherwise, the robot moves N
to the top of the layer, takes one step NW, and places the tile. In this manner,
the robot continues to extend the triangle tile by tile until the line only consists
of the triangle’s vertex.

Analysis We now state the main results for the triangle formation algorithm.

Fig. 33: Snapshots of triangle formation. If the number of tiles is not triangular,
the final layer will not be completely filled.

Correctness. The two stages of the algorithm can be analyzed separately. The
correctness of the line formation stage follows from (i) the tile searching phase
always leads the robot to discover a safe tile to move, (ii) the tile moving phase
never disconnects the tile structure, and (iii) the algorithm terminates when a
line is formed. The correctness of the triangle formation stage is easily estab-
lished, resulting in the following theorem.

Theorem 17. The algorithm correctly transforms any connected tile structure
into a triangle.

Runtime. The two stages are again analyzed separately. In the first stage, each
tile is moved by at most n steps. This is due to the fact that the easternmost
column of the initial configuration is never moved, and since tiles are only moved
S and SE. As there are n tiles, the total number of rounds that account to moving
tiles is bounded by O(n2). Additionally, the robot has to move through the
structure in order to search for tiles. By assigning coordinates to the nodes and
using the coordinates of the robot as a potential function, it can be shown that
the total number of rounds that account to searching for tiles is also bounded
by O(n2). In the second stage, each tile is carried by a distance of at most n,
and moving to the next tile takes an additional n steps at most. Therefore, we
have the following theorem.

Theorem 18. The algorithm constructs a triangle within O(n2) rounds.

It is not hard to see that Ω(n2) rounds are necessary to rearrange an arbi-
trary initial tile configuration into a triangle using a single robot. If the initial
configuration is a line, then a constant fraction of the tiles must be moved by a
distance linear in n and thus, in total, Ω(n2) move steps are necessary.

Distributed Algorithm In order to extend the algorithm to construct a tri-
angle with multiple robots that work in coordination, several challenges must
be overcome. First, robots which are hanging off the edge of the tile structure

(a) (b) (c)

Fig. 34: A (a) block, (b) overhang, and (c) tree.

may be disconnected if another robot lifts the tile they were hanging on. Thus,
a robot checks for any hanging robots before lifting a tile. Second, the line for-
mation stage must be modified so that all robots eventually learn the line has
been formed. Finally, robots may obstruct one another’s progress when forming
the line and triangle, requiring them to either communicate or simply wait in
order to become unblocked.

Although correctness can be proven for this multi-robot approach, it is diffi-
cult to make any runtime guarantees. This is due to the fact that, when there are
many robots compared to the number of tiles, many robots are blocked by others
and must wait to make progress. However, simulation results for distributed line
formation [31] suggest a reasonable speedup for few robots in randomly gener-
ated initial configurations. In order to guarantee a speedup for multiple robots,
we believe different formation strategies that better utilize coordination between
the robots will be useful.

Alternative Intermediate Structures Although a line can be constructed
efficiently, its linear diameter (i.e., the maximal length of a shortest path between
any two tiles) may make it an undesirable intermediate structure. In fact, if both
the initial diameter D and the diameter of the desired shape are small, moving
tiles by a linear distance seems to be an excessive effort. Therefore, we briefly
describe how to construct two alternate intermediate structures, namely a block
and a tree, noting their advantages and disadvantages.

Block Formation. In a block, all tiles except those farthest to the west have a
neighbor to the northwest. A block has only one westernmost column, and every
row begins with a tile from that column (see Fig. 34a).

As in the line formation algorithm, constructing a block alternates between
searching and moving phases. The robot first searches for a locally northwestern-
most tile by repeatedly moving NW, SW, or N (in that precedence). The robot
then lifts the tile, moves SE until it reaches an empty node, and places the tile
there. Although this simple algorithm correctly constructs a block, detecting

its completion requires a series of more complex tests performed alongside the
block’s construction.

Theorem 19. The algorithm constructs a block within O(nD) rounds and en-
sures that no tile is ever moved by more than a distance D.

Note that since tiles are exclusively moved SE, the resulting block has at
most D rows consisting of at most D tiles each, and therefore has diameter
O(D). Therefore, by using a block as an intermediate structure, a triangle can
be constructed in O(nD) rounds. When the initial configuration’s diameter is
low, i.e., D = O(

√
n), a triangle can thus be formed in O(n3/2) rounds.

Tree Formation. While the block-based approach focuses on quickly construct-
ing a suitable intermediate structure, it may also be desirable to minimize the
required work space. Both the line and block are, in many cases, built almost
completely outside the initial configuration’s convex hull (where we refer to the
convex hull of the corresponding set of hexagonal tiles in the Euclidean plane).
We briefly describe an algorithm that builds a tree in time O(n2) by exclusively
moving tiles inside the structure’s convex hull. A tree is a connected tile configu-
ration that does not contain an overhang, i.e., a set of vertically adjacent empty
nodes bounded by tiles to the north, west, and south. Examples of an overhang
and a tree can be found in Figs. 34b and 34c, respectively.

We describe the tree formation algorithm at a high level and refer the in-
terested reader to [31] for a detailed description. Roughly speaking, the robot
traverses the columns of the tile structure from west to east until it encounters
an overhang. It then fills the overhang by retrieving tiles from western columns.
Here, the robot exploits the property that the western columns no longer have
overhangs, which allows it to find safely removable tiles efficiently and to bring
them back to the overhang. After filling the overhang, the algorithm recurs. Cor-
rectness of this approach is established by proving that the algorithm (i) fills an
overhang if one exists and (ii) terminates after a complete traversal. Together
with a detailed runtime analysis, we have the following theorem.

Theorem 20. The algorithm constructs a tree within O(n2) rounds without ever
placing a tile outside the initial structure’s convex hull.

7.3 Shape Recognition

For many applications of programmable matter such as shape formation, trans-
formation, repair, or sealing, it may be useful or even necessary to first determine
whether the initial structure has a certain shape. However, as already argued,
the detection capabilities of a single robot are very limited: it is, for example, not
able to distinguish (i) a spiral from a hollow hexagon [31], or (ii) a parallelogram
whose longer side is, say, the square of its shorter side, from a larger parallel-
ogram [30]. Therefore, we begin by presenting a set of simple structures that
can be detected by a single robot. Afterwards, we present some results for the
recognition of parallelograms of certain side ratios with the help of pebbles. Note

that instead of using pebbles the robot may also cooperate with other robots,
each mimicking the behaviour of a pebble. The details of the results presented
in this chapter can be found in [30].

Problem Description Consider a single robot that is placed on some tile
of an arbitrary initial tile configuration. The shape recognition problem tasks
the robot with deciding if the tile structure is of a certain shape, e.g., a line,
triangle, hexagon, or parallelogram. If the shape is a parallelogram, the robot
must additionally decide if its longer side has length ` = f(h), for a given function
f(·), where h is the length of its shorter side. In this section, we ask whether
` = ah+ b for some constants a and b.

Algorithm All four types of shapes can be recognized using a similar strategy.
For example, to test if a given tile shape is a line, the robot first chooses a
direction in which there is a tile (say, w.l.o.g., N), walks in that direction as far
as possible, and then traverses the structure in the opposite direction until no
longer possible. If it ever encounters a tile to the east or west of any traversed
tile, the structure is not a line.

To test if a given tile shape is a (filled) parallelogram axis-aligned along the
robot’s N and NE directions, the robot first moves to a locally southernmost
tile by moving S and SW as long as there is a tile in either of these directions. It
then traverses the shape column by column in a snake-like fashion (see Fig. 35a)
by repeating the following movements: move N as far as possible; move one
step NE ; move S as far as possible, and finally move one step NE. The above
procedure is repeated until a NE movement is impossible. The robot can decide
whether the structure is a parallelogram by performing a sequence of checks
alongside these movements. Any other axis-aligned parallelogram, and all other
aforementioned shapes, can be tested in a similar fashion.

(a) (b)

Fig. 35: (a) The snake-like traversal to detect a parallelogram. (b) The traversal
to decide whether ` = ah+ b (where in this case a = 2 and b = 3).

Now consider the problem of determining whether ` = ah+b. W.l.o.g., assume
that the longer side of the parallelogram is in the northeast direction. The longer
side can be determined by moving to the northernmost tile of column 0 (where
the columns are numbered from 0 to `− 1 from west to east), and then moving
SE as far as possible; if there is a tile to the southeast (resp., to the south), then
the longer side is in the northeastern (resp., southern) direction. If there is no
tile to the northeast or south, then the parallelogram is a rhombus.

To decide whether ` = ah + b, the robot first moves to the northernmost
tile of column 0. It then traverses the tile structure in two stages to verify the
ratio of the sides. In the first stage, the robot “measures” the distance ah along
the length of the parallelogram by moving in a zig-zag fashion as depicted in
Fig. 35b. In the second stage, the robot measures b. More specifically, in the first
stage, the robot repeats the following movements in a loop: (i) move SE as far
as possible, (ii) move N as far as possible, and (iii) move one step NE. After
having performed the complete sequence of SE movements a times, the robot
moves on to the second stage, in which it makes an additional b NE steps.

If the robot reaches the easternmost column before completing the above
procedure, or halts on a tile with a neighboring tile to the northeast, it terminates
with a negative result. Otherwise, it terminates with a positive result.

Analysis We have the following theorem for shape recognition.

Theorem 21. A single robot can detect whether the structure is a line, a tri-
angle, a hexagon, or a parallelogram. Furthermore, it can detect whether the
structure is a parallelogram with ` = ah+ b for any constants a, b ∈ N.

However, the following theorem shows that a single robot by itself cannot
hope to verify any side ratios of a parallelogram that are not linear.

Theorem 22. A single robot without any pebbles cannot decide whether the tile
configuration is a parallelogram with ` = f(h), where f(x) = ω(x).

Theorem 22 can be proven using the following observation: to correctly detect
the length of a parallelogram of length f(h), the robot must move from the
westernmost to the easternmost column (or vice versa) at least once (otherwise
it would be unaware of any elongation of the parallelogram). Therefore, if h is
chosen such that b(f(h) − 2)/hc > k, where k is the given number of states of
the robot, there must be a row of the parallelogram in which the robot steps on
more than k tiles of columns between column 1 and ` − 2, which implies that
it visits at least two of these tiles in the same state. Therefore, there must be
a repetition in the traversal between column 0 and ` − 1, and if the length of
the parallelogram is elongated by a multiple of the distance between these two
tiles, the robot will not recognize this change. This can be used to construct
an elongated parallelogram that is indistinguishable from the original one by a
single particle with no pebbles.

The Power of Pebbles For the problem of recognizing parallelograms of cer-
tain side ratios, equipping a robot with a set of pebbles tremendously increases
its capabilities. For example, whereas a single robot without any pebbles cannot
decide any superlinear function, by Theorem 22, a single pebble suffices to decide
any polynomial of constant degree and with constant coefficients. Furthermore,
two pebbles suffice to decide certain exponential functions. An overview of some
results for a robot with pebbles, which can be found in full detail in the work of
Gmyr et al. [30], is shown in Table 1.

Pebbles Possible Impossible Remarks

1 f(x) = anx
n + . . .+ a0 f(x) = ω(x6k+2)

n, ai constant for all i;
k is the number of
the robot’s states

2 f(x) = 22
..
.2

x

︸ ︷︷ ︸
s+1

—
s constant;

asymptotic lower bound
does not exist

n fn(x) fn+1(x) for some function family fn

Table 1: A summary of results for recognizing whether a given parallelogram has
height h and length ` = f(h) given a certain number of pebbles.

8 Conclusion and Future Work

This chapter presented a comprehensive review of the distributed algorithms
for programmable matter defined under the amoebot model, and surveyed some
initial results in the budding new model of hybrid programmable matter. For
the amoebot model, we presented two distinct types of algorithms: those that
are (mostly) deterministic and heavily utilize state management and particle
communication, and those that are fully stochastic, keeping little to no state
and requiring very little communication between particles. There is an inherent
tradeoff between these two approaches. The former often yields algorithms that
provably terminate within a linear number of rounds or better, but are more
complex to design, more difficult to implement, and have single points of failure.
On the other hand, the stochastic algorithms are very difficult to analyze in
terms of convergence times and are observed to be relatively slow in simulations;
however, they are inherently robust and are relatively easy to design.

Looking forward, there are several intriguing research directions for the amoe-
bot model. First, any physical implementation of programmable matter would
need to meaningfully address the challenge of power management as it expends
energy moving and computing. Extending the amoebot model to incorporate
energy costs for particle actions could lead to interesting modeling questions,

such as how individual particles obtain energy and share it among the collective.
Moreover, considering energy usage as an alternative to time complexity when
analyzing algorithm efficiency could yield new paradigms for algorithm design.
Second, developing a general framework for fault tolerant algorithms under the
amoebot model would be a huge step towards realizing programmable matter
systems that can handle unpredictable and potentially hazardous application
domains. Third, generalizing the amoebot model to three-dimensional space is
an exciting goal and a current research direction that may bring our theoretical
investigations closer to physically realizable systems.

This is also of interest for hybrid programmable matter; in particular, con-
sidering three-dimensional tiles that are hollow (e.g., skeletal polyhedra) would
allow active robots to move through the resulting structure, generalizing the
movement primitives used in two-dimensional space. One could additionally
imagine that the hollow tiles could fold into a condensed shape, enabling robots
to transport tiles through other tiles. Other directions for future work on hybrid
programmable matter include developing algorithms for multiple robots that
provably benefit from the power of coordination, considering settings where tiles
may break or need to be repaired, and settings where tiles may attach and detach
at random based on environmental changes outside of the robots’ control.

Acknowledgements

Our warmest gratitude belongs to all of our wonderful collaborators, both past
and present, without whom this research would not have been possible. We
would like to thank Robert Gmyr, Thim Strothmann, and Zahra Derakhshandeh
for their trailblazing work on self-organizing particle systems during their PhD
studies. We would especially like to thank Robert for letting us use materials
from his PhD thesis for this chapter (in particular, his excellent images). To
Dana Randall and Sarah Cannon, thank you for leading us into a new paradigm
by showing us just how much one can do with a whole lot of randomness. To
Irina Kostitsyna and Dorian Rudolph, thank you for all your work in developing
hybrid programmable matter. Finally, to our undergraduate research assistants,
especially Alexandra Porter: thank you for your enthusiasm, energy, and effort.

References

1. Andrés Arroyo, M., Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A
stochastic approach to shortcut bridging in programmable matter. In: DNA Com-
puting and Molecular Programming — 23rd International Conference. pp. 122–138.
DNA23 (2017), an updated journal version is awaiting publication and available
online at https://arxiv.org/abs/1709.02425

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

3. Baxter, R.J., Enting, I.G., Tsang, S.K.: Hard-square lattice gas. Journal of Statis-
tical Physics 22, 465–489 (1980)

4. Blanca, A., Chen, Y., Galvin, D., Randall, D., Tetali, P.: Phase coexistence for
the hard-core model on Z2. Combinatorics, Probability and Computing pp. 1–22
(2018)

5. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to
search than graphs). In: 19th Annual Symposium on Foundations of Computer
Science. pp. 132–142. SFCS ’78 (1978)

6. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. AMS
(2011)

7. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths.
Journal of Theoretical Biology 309, 121–133 (2012)

8. Borgs, C., Chayex, J.T., Kim, J.H., Frieze, A., Tetali, P., Vigoda, E., Vu, V.H.: Tor-
pid mixing of some Monte Carlo Markov chain algorithms in statistical physics. In:
Proceedings of the 40th Annual Symposium on Foundations of Computer Science.
pp. 218–229. FOCS ’99 (1999)

9. Camazine, S., Visscher, P.K., Finley, J., Vetter, R.S.: House-hunting by honey
bee swarms: Collective decisions and individual behaviors. Insectes Sociaux 46(4),
348–360 (1999)

10. Cannon, S., Daymude, J.J., Gokmen, C., Randall, D., Richa, A.W.: Brief announce-
ment: A local stochastic algorithm for separation in heterogeneous self-organizing
particle systems. In: Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing. pp. 483–485. PODC ’18 (2018), a full version is available
online at https://arxiv.org/abs/1805.04599

11. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm
for compression in self-organizing particle systems. In: Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing. pp. 279–288. PODC
’16 (2016), a significantly updated journal version is in preparation and available
online at https://arxiv.org/abs/1603.07991

12. Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: Proceedings of
the 1994 IEEE International Conference on Robotics and Automation. ICRA ’94,
vol. 1, pp. 449–455 (1994)

13. Das, S.: Mobile agents in distributed computing: Network exploration. Bulletin of
the European Association for Theoretical Computer Science 109, 54–69 (2013)

14. Daymude, J.J., Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler,
C., Strothmann, T.: On the runtime of universal coating for programmable matter.
Natural Computing 17(1), 81–96 (2018)

15. Daymude, J.J., Gmyr, R., Hinnenthal, K., Kostitsyna, I., Scheideler, C., Richa,
A.W.: Convex hull formation for programmable matter (2018), preprint online at
https://arxiv.org/abs/1805.06149

16. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. In: Algorithms for Sensor
Systems. pp. 127–140. ALGOSENSORS ’17 (2017)

17. Daymude, J.J., Richa, A.W., Scheideler, C.: The amoebot model (2017), available
online at https://sops.engineering.asu.edu/sops/amoebot

18. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: Amoebot - a new model for programmable matter. In:
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures. pp. 220–222. SPAA ’14 (2014)

19. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An
algorithmic framework for shape formation problems in self-organizing particle sys-
tems. In: Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication. pp. 21:1–21:2. NANOCOM ’15 (2015)

20. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal shape formation for programmable matter. In: Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures. pp. 289–299. SPAA
’16 (2016)

21. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal coating for programmable matter. Theoretical Computer Science 671, 56–68
(2017)

22. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R.A., Richa, A.W., Schei-
deler, C.: Leader election and shape formation with self-organizing programmable
matter. In: DNA Computing and Molecular Programming — 21st International
Conference. pp. 117–132. DNA21 (2015)

23. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape for-
mation by programmable particles. In: 21st International Conference on Principles
of Distributed Systems. OPODIS ’17, vol. 95, pp. 31:1–31:16 (2018)

24. Di Luna, G.A., Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Line recovery
by programmable particles. In: Proceedings of the 19th International Conference
on Distributed Computing and Networking. pp. 4:1–4:10. ICDCN ’18 (2018)

25. Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C.: Ameba-inspired self-organizing
particle systems (2013), workshop paper at Biological Distributed Algorithms
(BDA) 2013. Available online at https://arxiv.org/abs/1307.4259

26. Doty, D.: Theory of algorithmic self-assembly. Communications of the ACM 55(12),
78–88 (2012)

27. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1.
Wiley, New York (1968)

28. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science 399(3), 236–245 (2008)

29. Gmyr, R.: Distributed Algorithms for Overlay Networks and Programmable Mat-
ter. Ph.D. thesis, Paderborn University (2017)

30. Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C.:
Shape recognition by a finite automaton robot. In: 43rd International Symposium
on Mathematical Foundations of Computer Science. pp. 52:1–52:15. MFCS ’18
(2018)

31. Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C.,
Strothmann, T.: Forming tile shapes with simple robots. In: DNA Computing and
Molecular Programming — 24rd International Conference. DNA24 (2018)

32. Hastings, W.K.: Monte carlo sampling methods using Markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

33. Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Funda-
mentals of Computation Theory. pp. 433–444. FCT ’81 (1981)

34. Jeanson, R., Rivault, C., Deneubourg, J.L., Blanco, S., Fournier, R., Jost, C.,
Theraulaz, G.: Self-organized aggregation in cockroaches. Animal Behaviour 69(1),
169–180 (2005)

35. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,
Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular
robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)

36. Lynch, N.: Distributed Algorithms. Morgan Kauffman (1996)

37. Miracle, S., Randall, D., Streib, A.: Clustering in interfering binary mixtures. In:
15th International Workshop on Randomization and Approximation Techniques in
Computer Science. pp. 652–663. RANDOM ’11 (2011)

38. Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to
survive floods. Proceedings of the National Academy of Sciences 108(19), 7669–
7673 (2011)

39. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA Brownian motor with
coordinated legs. Science 324(5923), 67–71 (2009)

40. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing 13(2), 195–224 (2014)

41. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Networks
59(3), 331–347 (2012)

42. Porter, A., Richa, A.: Collaborative computation in self-organizing particle sys-
tems. In: Unconventional Computation and Natural Computation. pp. 188–203.
UCNC ’18 (2018)

43. Reid, C.R., Lutz, M.J., Powell, S., Kao, A.B., Couzin, I.D., Garnier, S.: Army ants
dynamically adjust living bridges in response to a cost–benefit trade-off. Proceed-
ings of the National Academy of Sciences 112(49), 15113–15118 (2015)

44. Reid, C.R., Latty, T.: Collective behaviour and swarm intelligence in slime moulds.
FEMS Microbiology Reviews 40(6), 798–806 (2016)

45. Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using
dnazymes. Theoretical Computer Science 410, 1428–1439 (2009)

46. Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improving mixing conditions
on the grid for counting and sampling independent sets. Probability Theory and
Related Fields 156, 75–99 (2013)

47. Şahin, E.: Swarm robotics: From sources of inspiration to domains of application.
In: Swarm Robotics. pp. 10–20 (2005)

48. Savoie, W., Cannon, S., Daymude, J.J., Warkentin, R., Li, S., Richa, A.W., Ran-
dall, D., Goldman, D.I.: Phototactic supersmarticles (2018), to appear in Artifi-
cial Life and Robotics; preprint available online at https://arxiv.org/abs/1711.
01327

49. Schelling, T.C.: Models of segregation. The American Economic Review 59(2),
488–493 (1969)

50. Schelling, T.C.: Dynamic models of segregation. The Journal of Mathematical So-
ciology 1(2), 143–186 (1971)

51. Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. Journal
of the American Chemical Society 126(35), 10834–10835 (2004)

52. Strothmann, T.F.: Self-* Algorithms for Distributed Systems: Programmable Mat-
ter & Overlay Networks. Ph.D. thesis, Paderborn University (2017)

53. Thubagere, A.J., Li, W., Johnson, R.F., Chen, Z., Doroudi, S., Lee, Y.L., Izatt,
G., Wittman, S., Srinivas, N., Woods, D., Winfree, E., Qian, L.: A cargo-sorting
DNA robot. Science 357(6356) (2017)

54. Toffoli, T., Margolus, N.: Programmable matter: Concepts and realization. Physica
D: Nonlinear Phenomena 47(1), 263–272 (1991)

55. Vinković, D., Kirman, A.: A physical analogue of the Schelling model. Proceedings
of the National Academy of Sciences 103(51), 19261–19265 (2006)

56. Walter, J.E., Tsai, E.M., Amato, N.M.: Algorithms for fast concurrent reconfigu-
ration of hexagonal metamorphic robots. IEEE Transactions on Robotics 21(4),
621–631 (2005)

57. Wickham, S.F., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H.,
Turberfield, A.J.: A DNA-based molecular motor that can navigate a network
of tracks. Nature Nanotechnology 7(3), 169–173 (2012)

58. Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of the 4th Conference on Innovations in Theoretical Computer Science.
pp. 353–354 (2013)

59. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robotics Automation Magazine 14(1), 43–52 (2007)

