Computing by Programmable Particles

Abstract

The vision for programmable matter is to realize a physical substance that is scalable, versatile, instantly reconfigurable, safe to handle, and robust to failures. Programmable matter could be deployed in a variety of domain spaces to address a wide gamut of problems, including applications in construction, environmental science, synthetic biology, and space exploration. However, there are considerable engineering and computational challenges that must be overcome before such a system could be implemented. Towards developing efficient algorithms for novel programmable matter behaviors, the amoebot model for self-organizing particle systems and its variant, hybrid programmable matter, provide formal computational frameworks that facilitate rigorous algorithmic research. In this chapter, we discuss distributed algorithms under these models for shape formation, shape recognition, object coating, compression, shortcut bridging, and separation in addition to some underlying algorithmic primitives.

Publication
Distributed Computing by Mobile Entities: Current Research in Moving and Computing
Joshua J. Daymude
Joshua J. Daymude
Assistant Professor, SCAI & CBSS

I am a Christian and assistant professor in computer science studying collective emergent behavior and programmable matter through the lens of distributed computing, stochastic processes, and bio-inspired algorithms. I also love gaming and playing music.

Kristian Hinnenthal
Kristian Hinnenthal
PhD Student, Computer Science
Andréa W. Richa
Andréa W. Richa
Professor of Computer Science
Christian Scheideler
Christian Scheideler
Professor of Computer Science

Related